Green solutions with diamond materials:

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels.

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels. © T.Petit/H.Cords/HZB

Horizon 2020 invests 3.9 million Euro in research project to convert CO2 into fuels using sunlight and diamond materials

A great new idea is now being investigated by scientists of Germany, France, England, and Sweden, among them HZB’s Prof. Emad Aziz. They propose exploring diamond materials for photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light (DIACAT).

Their proposal was ranked top in a tough selection process within the Future Emerging Technologies (FET) Section of the European Horizon 2020 Framework Programme for Research and Innovation. It will be funded with a total budget of 3.9 million Euro, 526,000 Euro of which will be allocated to the HZB. The scientists propose to develop a novel technique for direct photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light. Their ultimate goal is to build a functioning lab-scale device.

Diamonds and light can speed up chemical reactions

Their approach is based on a unique property of man-made diamond materials: these materials can act as a catalyst when illuminated by light. The project will be coordinated by Prof. Anke Krüger, at Julius-Maximilians-Universität Würzburg, and includes science teams from CEA (France), University of Oxford (UK), Uppsala University (Sweden), Fraunhofer Institute for Applied Solid State Physics, Ionic Liquid Technologies GmbH, and HZB in Germany.

Unique equipment at BESSY II, HZB

HZB scientist Emad Aziz has built up a research team following a Starting Grant awarded by the European Research Council in 2011. He has set up a unique instrument at HZB’s BESSY II synchrotron to analyze liquids and materials in solution and is also leading a Joint Lab at Freie Universität Berlin equipped with high-performance lasers with ultrashort pulses. “We have direct access to a multitude of experimental instruments that will enable us to investigate the physical and chemical properties of diamond materials”, he says. Postdoc Tristan Petit has brought his expertise on nanodiamonds to the HZB team: “My postdoc work was focused on nanodiamonds in solution. Now we will extend this work to bulk diamond-liquid interfaces and nanostructured diamond surfaces and see how well we can tune these materials to turn sunlight into fuel”, he explains.

Storing solar energy in chemicals

The research project will not only enhance the experimental and theoretical understanding of catalytic behavior of diamond materials, but might also result in a first device using diamond materials that demonstrates the feasibility of direct CO2 reduction using visible light. If the scientists can achieve their ambitious goals, their project might pave the way for a novel technique to store solar energy via sustainable production of fine chemicals and fuels.

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.