Green solutions with diamond materials:

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels.

Sunlight activates the catalytic behavior of diamond materials, thus helping to convert carbon dioxide into fine chemicals and fuels. © T.Petit/H.Cords/HZB

Horizon 2020 invests 3.9 million Euro in research project to convert CO2 into fuels using sunlight and diamond materials

A great new idea is now being investigated by scientists of Germany, France, England, and Sweden, among them HZB’s Prof. Emad Aziz. They propose exploring diamond materials for photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light (DIACAT).

Their proposal was ranked top in a tough selection process within the Future Emerging Technologies (FET) Section of the European Horizon 2020 Framework Programme for Research and Innovation. It will be funded with a total budget of 3.9 million Euro, 526,000 Euro of which will be allocated to the HZB. The scientists propose to develop a novel technique for direct photocatalytic conversion of carbon dioxide into fine chemicals and fuels using visible light. Their ultimate goal is to build a functioning lab-scale device.

Diamonds and light can speed up chemical reactions

Their approach is based on a unique property of man-made diamond materials: these materials can act as a catalyst when illuminated by light. The project will be coordinated by Prof. Anke Krüger, at Julius-Maximilians-Universität Würzburg, and includes science teams from CEA (France), University of Oxford (UK), Uppsala University (Sweden), Fraunhofer Institute for Applied Solid State Physics, Ionic Liquid Technologies GmbH, and HZB in Germany.

Unique equipment at BESSY II, HZB

HZB scientist Emad Aziz has built up a research team following a Starting Grant awarded by the European Research Council in 2011. He has set up a unique instrument at HZB’s BESSY II synchrotron to analyze liquids and materials in solution and is also leading a Joint Lab at Freie Universität Berlin equipped with high-performance lasers with ultrashort pulses. “We have direct access to a multitude of experimental instruments that will enable us to investigate the physical and chemical properties of diamond materials”, he says. Postdoc Tristan Petit has brought his expertise on nanodiamonds to the HZB team: “My postdoc work was focused on nanodiamonds in solution. Now we will extend this work to bulk diamond-liquid interfaces and nanostructured diamond surfaces and see how well we can tune these materials to turn sunlight into fuel”, he explains.

Storing solar energy in chemicals

The research project will not only enhance the experimental and theoretical understanding of catalytic behavior of diamond materials, but might also result in a first device using diamond materials that demonstrates the feasibility of direct CO2 reduction using visible light. If the scientists can achieve their ambitious goals, their project might pave the way for a novel technique to store solar energy via sustainable production of fine chemicals and fuels.

arö


You might also be interested in

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).