From Excited Atoms to Functionality – ERC Advanced Grant Awarded to Alexander Föhlisch

Alexander Föhlisch is head of the HZB Institute Methods and Instrumentation for Synchrotron Radiation Research and holds a professorship at University Potsdam.

Alexander Föhlisch is head of the HZB Institute Methods and Instrumentation for Synchrotron Radiation Research and holds a professorship at University Potsdam. © HZB

Under the EU Horizon 2020 Programme for Research and Innovation, Alexander Föhlisch has been awarded an ERC Advanced Grant. The physicists is holding a joint appointment at the Institute for Physics and Astronomy of the University of Potsdam and at the Helmholtz-Zentrum Berlin für Materialien und Energie. He is to receive a total of 2.5 million Euros over a five-year period to support his work on highly selective methods of detection using synchrotron light and X-ray lasers.

The European Research Council (ERC) promotes unconventional, trailblazing research and supports outstanding researchers. Leading scientists at the University of Potsdam are presently carrying out work under six other ERC grants.

The new research project is named “Excited-State Dynamics from Anti-Stokes and Non-Linear Resonant Inelastic X-Ray Scattering” (EDAX). Under this programme, Prof. Föhlisch will study how chemical reaction pathways and phase-transition behaviour can be probed using novel X-ray spectrographic methods. These will serve as a foundation for efficient energy conversion and future energy-efficient information technologies. The University of Potsdam is pushing ahead with cutting-edge research through the EDAX project and consolidating the rising success of the University in EU research programmes.

Alexander Föhlisch studied physics at Eberhard Karls Universität Tübingen and received his German Diplom degree from the University of Hamburg and Master’s degree in physics from the State University of New York at Stony Brook (SUNY). Prior to completing his research and teaching responsibilities for his professorial qualification in Experimental Physics at the University of Hamburg, he conducted his doctoral research at the Advanced Light Source of the Lawrence Berkeley National Laboratory and received his doctoral degree from Uppsala University in Sweden. As a jointly appointed Professor at the University of Potsdam and the Helmholtz-Zentrum Berlin, he is determining the electronic structure and ultrafast dynamics of atomic entities using innovative X-ray methods. Fundamental properties of materials – such as molecular dynamics at boundaries, switching processes in solids and chemical bonding at active centres – can be determined this way.

Uni Potsdam/HZB

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    News
    09.10.2025
    Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
    The Ministry of Science and Technology, Government of India, has announced the recipients of the Vaishvik Bhartiya Vaigyanik (VAIBHAV) Fellowship, a flagship initiative aimed at fostering collaboration between the Indian STEMM (Science, Technology, Engineering, Mathematics, and Medicine) diaspora and leading research institutions in India. Among the 2025 awardees is Dr. Prashanth W. Menezes, Head of the Department of Materials Chemistry for Catalysis at Helmholtz-Zentrum Berlin (HZB).