From Excited Atoms to Functionality – ERC Advanced Grant Awarded to Alexander Föhlisch

Alexander Föhlisch is head of the HZB Institute Methods and Instrumentation for Synchrotron Radiation Research and holds a professorship at University Potsdam.

Alexander Föhlisch is head of the HZB Institute Methods and Instrumentation for Synchrotron Radiation Research and holds a professorship at University Potsdam. © HZB

Under the EU Horizon 2020 Programme for Research and Innovation, Alexander Föhlisch has been awarded an ERC Advanced Grant. The physicists is holding a joint appointment at the Institute for Physics and Astronomy of the University of Potsdam and at the Helmholtz-Zentrum Berlin für Materialien und Energie. He is to receive a total of 2.5 million Euros over a five-year period to support his work on highly selective methods of detection using synchrotron light and X-ray lasers.

The European Research Council (ERC) promotes unconventional, trailblazing research and supports outstanding researchers. Leading scientists at the University of Potsdam are presently carrying out work under six other ERC grants.

The new research project is named “Excited-State Dynamics from Anti-Stokes and Non-Linear Resonant Inelastic X-Ray Scattering” (EDAX). Under this programme, Prof. Föhlisch will study how chemical reaction pathways and phase-transition behaviour can be probed using novel X-ray spectrographic methods. These will serve as a foundation for efficient energy conversion and future energy-efficient information technologies. The University of Potsdam is pushing ahead with cutting-edge research through the EDAX project and consolidating the rising success of the University in EU research programmes.

Alexander Föhlisch studied physics at Eberhard Karls Universität Tübingen and received his German Diplom degree from the University of Hamburg and Master’s degree in physics from the State University of New York at Stony Brook (SUNY). Prior to completing his research and teaching responsibilities for his professorial qualification in Experimental Physics at the University of Hamburg, he conducted his doctoral research at the Advanced Light Source of the Lawrence Berkeley National Laboratory and received his doctoral degree from Uppsala University in Sweden. As a jointly appointed Professor at the University of Potsdam and the Helmholtz-Zentrum Berlin, he is determining the electronic structure and ultrafast dynamics of atomic entities using innovative X-ray methods. Fundamental properties of materials – such as molecular dynamics at boundaries, switching processes in solids and chemical bonding at active centres – can be determined this way.

Uni Potsdam/HZB

  • Copy link

You might also be interested in

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.