HZB stellt Forschung an Thermoelektrika vor

HZB-Gruppe bei der ICT/ECT2015. Von links nach rechts: Dr. Klaus Habicht (Leiter der Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien"), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner

HZB-Gruppe bei der ICT/ECT2015. Von links nach rechts: Dr. Klaus Habicht (Leiter der Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien"), Dr. Tommy Hofmann, Dr. Katharina Fritsch, Dr. Britta Willenberg, Dr. Katrin Meier-Kirchner

Die "International Conference on Thermoelectrics (ICT)" und die "European Conference on Thermoelectrics (ECT) " fanden in diesem Jahr vom 29.06.2015 bis zum 02.07.2015 in Dresden statt. Das HZB war bei diesem internationalen, multidisziplinären Treffen zum ersten Mal vertreten. Dabei präsentierte die HZB Abteilung "Methoden zur Charakterisierung von Transportphänomenen in Energiematerialien" um Dr. Klaus Habicht ihre Forschung mit zwei Vorträgen und einem Poster.

Dr. Tommy Hofmann präsentierte einen Vortrag zu den thermoelektrischen Eigenschaften von nanostrukturiertem Silizium, das im HZB über ein Ätzverfahren hergestellt und mittels makroskopischer Charakterisierungsmethoden und mikroskopischer Sonden untersucht wird. Dieses Material ist zurzeit von besonders großem Interesse, da Silizium im Gegensatz zu thermoelektrischen Materialien wie Bi2Te3 oder PbTe in der Natur reichlich vorhanden, nicht giftig und preiswert ist. Die Nanostrukturierung dieses einfachen Materials eröffnet neue Möglichkeiten, die thermoelektrische Effizienz des Materials zu erhöhen, indem zum Beispiel die thermische Leitfähigkeit durch künstlich eingebrachte Grenzflächen verringert wird. Die thermische Leitfähigkeit als makroskopische Größe ist wiederum mit dem Transport von Gitterschwingungen oder Phononen auf mikroskopischer Ebene verbunden, zu dem die Techniken der inelastischen Neutronenstreuung am Forschungsreaktor BER II des HZB einen idealen Zugang bieten.

In einem zweiten Vortrag gab Dr. Katharina Fritsch einen Überblick über die am HZB verfügbaren Methoden für die Forschung an Thermoelektrika und stellte beispielhaft ausgesuchte Forschungsprojekte der Abteilung vor. So wurden neben nanostrukturiertem Silizium Experimente zur Gitterdynamik und der elektronischen Bandstruktur in niedrig-dimensionalen thermoelektrischen Einkristallen sowie strukturelle Untersuchungen an Skutteruditverbindungen diskutiert.

Der Zusammenhang zwischen Struktur und Funktionalität in Skutteruditverbindungen war auch Thema des von Dr. Britta Willenberg präsentierten Posters mit dem Titel "Yb-filled skutterudites: a combined macroscopic and microscopic approach", welches die Ergebnisse eines Kooperationsprojekts der Abteilung mit dem Institut für Werkstoff-Forschung am Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln vorstellte.

Insgesamt war die Konferenz eine gute Gelegenheit, Feedback zu unseren Forschungsprojekten zu erhalten und die experimentelle Infrastruktur sowie die Forschungsmöglichkeiten am HZB einem internationalen Publikum vorzustellen. Mit unserem Forschungsprogramm haben wir das Interesse von neuen möglichen Kooperationspartnern geweckt.

Klaus Habicht

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.