Gerd Schneider receives a professorship for "X-ray microscopy" at Humboldt-Universität zu Berlin

Prof. Dr. Gerd Schneider becomes a full professur for x-ray microscopy at the Humboldt University Berlin and is the head of the HZB group "Microscopy".

Prof. Dr. Gerd Schneider becomes a full professur for x-ray microscopy at the Humboldt University Berlin and is the head of the HZB group "Microscopy". © WISTA MANAGEMENT GmbH

On 29 April 2015, Gerd Schneider (HZB) accepted the call to a W2-S “X-ray microscopy” professorship at the Department of Physics of Humboldt-Universität zu Berlin. The professorship is associated with heading the workgroup “X-ray microscopy” at the Helmholtz-Zentrum Berlin für Materialien und Energie. With his group, the internationally recognised expert is developing new methods and applications for X-ray microscopy, which delivers crucial information for many scientific disciplines – from material and energy research to the life sciences. 

The workgroup of Gerd Schneider operates one of the most advanced X-ray microscopes in the world, which allows spatial resolutions of down to ten nanometres using the “soft” X-ray light from BESSY II.

X-ray microscopy is an indispensable tool for studying materials
X-ray microscopy has decisive advantages over optical and electron microscopy: It allows researchers to observe objects in three dimensions, for example – and that at a very high resolution of 10 nanometres. “While researchers can only observe very thin samples of a maximum of about 0.1-µm thickness under the electron microscope, X-ray microscopy allows you to study entire cells of 10-µm thickness, for example. Compared to modern, super-resolution optical microscopy, which needs stain molecules inside cells to overcome the Abbé resolution limit, X-ray microscopy delivers a direct view to the cellular structures without any staining,” Prof. Gerd Schneider explains. Optical and X-ray microscopy therefore allow the study of whole cells, where correlative optical microscopy of individual cells can localise certain proteins whose distributions can be brought into a structural cellular context using X-ray microscopy.

Since every chemical element has specific X-ray absorption edges, X-ray microscopy can be used to determine the specific elements in the components of a sample. Even chemical bonding states can be clearly imaged using near-edge spectroscopy. Because the elements exhibit characteristic fluorescence under X-ray lights, one can also clearly determine the spatial distribution of extremely low concentrations of elements in a sample. In this way, X-ray microscopy delivers a comprehensive picture of each sample.  

Developing high-precision lenses

Achieving the highest possible resolution in X-ray microscopy requires high-precision lenses to focus the X-ray beams. In addition to developing X-ray microscopes, Gerd Schneider’s workgroup has contributed greatly to the advancement of these lenses, known as Fresnel zone plates. Given such 3D X-ray lenses and modern synchrotron sources like BESSY II, great contributions can be made towards answering many scientific questions, from the fundamentals of structural biology to research into modern energy storage solutions.

sz


You might also be interested in

  • Alkanes, laser flashes and BESSY's X-ray vision
    Science Highlight
    31.05.2024
    Alkanes, laser flashes and BESSY's X-ray vision
    An international research team has succeeded in observing an intermediate step in the catalysis of alkanes. By understanding these reactions, existing catalysts can be optimized in the future and new ones found, for example to convert the greenhouse gas methane into valuable raw materials for industry.

  • Dynamic measurements in liquids now possible in the laboratory
    Science Highlight
    23.05.2024
    Dynamic measurements in liquids now possible in the laboratory
    A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.
  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.