Freigeist Fellowship for Tristan Petit

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship.

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship. © HZB

For his project on nanodiamond materials and nanocarbon, Dr. Tristan Petit has been awarded a Freigeist Fellowship from the VolkswagenStiftung. The grant covers a five-year period and will enable him to establish his own research team. The VolkswagenStiftung is funding with these prestigious fellowships outstanding postdocs planning original research that transcends the bounds of their own field.

Following his doctoral studies, Dr. Tristan Petit joined the HZB team of Prof. Emad Aziz supported by a post-doctoral stipend from the Alexander von Humboldt Foundation. He had already investigated surface modification of nanodiamonds while exploring their potential for biomedical applications during his doctoral research at the Diamond Sensors Laboratory (CEA) in Gif sur Yvette, France. Petit has since expanded his research interests. This is because nanodiamond materials can also exhibit catalytic effects, in particular when irradiated by sunlight. One dream is to develop synthetic nanodiamond materials for manufacturing solar fuels like methane using sunlight and carbon dioxide, thereby storing solar energy chemically. Aziz and Petit are now working on this project under the European DIACAT research programme.

As a Freigeist Fellow, Petit will investigate how nanocarbon materials in aqueous solutions interact with their environment. These interactions have hardly been studied so far, but they are essential for developing new applications and being better able to assess risks.

It is very difficult to study nanocarbon materials in aqueous solutions experimentally, though. Spectrographic methods using X-ray light can provide information about the electrochemical and photochemical processes. Petit relies on specialised setups for this such as LiXEdrom at BESSY II that were developed at HZB specifically for these kinds of experiments. He intends to use infrared spectroscopy to determine the configuration of water molecules surrounding the nanoparticles. Petit also plans to carry out sequential laser-based pump-probe measurements in order to observe ultrafast electronic processes in the nanoparticles. The methods have already proven themselves in nanocarbon solid-state experiments, but their utilisation in studying nanocarbon in liquids is new, however.

“The Freigeist Fellowship makes it possible for me to research these problems comprehensively. Once we better understand the complex interactions between nanocarbon particles in an aqueous environment, we will be able to develop a new generation of carbon-based nanomaterials for different applications – from photocatalysis of solar fuels to medical applications”, says Petit. The Freigeist Fellowship is accompanied by funding of 805,000 EUR, of which 375,000 EUR is provided by HZB in-house resources and 430,000 EUR by the VolkswagenStiftung.

As a result, there are now two Freigeist Fellows on Aziz’ team. Dr. Annika Bande also received a Freigeist Fellowship last year and has since been working at the HZB Institute for Methods of Material Development headed by Aziz.

Further information on the Freigeist Fellowships:


You might also be interested in

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Best Innovator Award 2023 for Artem Musiienko
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).