Ladungstransport in hybriden Silizium-basierten Solarzellen

Sara J&auml;ckle hat gezeigt, dass sich an der Grenzfl&auml;che zwischen organischem Kontakt und n-dotiertem Silizium ein pn-&Uuml;bergang ausbildet. </p>
<p>

Sara Jäckle hat gezeigt, dass sich an der Grenzfläche zwischen organischem Kontakt und n-dotiertem Silizium ein pn-Übergang ausbildet.

© Björn Hoffmann

Sorgf&auml;ltige Messreihen an Silizium-Wafern mit unterschiedlich starker n-Dotierung haben die Entdeckung erm&ouml;glicht.

Sorgfältige Messreihen an Silizium-Wafern mit unterschiedlich starker n-Dotierung haben die Entdeckung ermöglicht. © Björn Hoffmann

Eine überraschende Erkenntnis bei organisch-anorganischen Hybrid-Solarzellen hat ein Team um Silke Christiansen gewonnen: anders als erwartet, entspricht der Übergang zwischen der organischen leitfähigen Kontaktschicht aus PEDOT:PSS und dem Silizium-Absorbermaterial nicht einem Metall-Halbleiter-Kontakt (Schottky-Kontakt), sondern einem pn-Übergang zwischen zwei Halbleitermaterialien. Ihre Ergebnisse sind nun in dem Nature-Journal Scientific Reports publiziert und können neue Wege aufzeigen, hybride Solarzellen zu optimieren.

Das untersuchte System basiert auf konventionellen n-dotierten Siliziumwafern, die mit dem organischen hochleitfähigen Material PEDOT:PSS  beschichtet sind und einen Wirkungsgrad von etwa 14 % zeigen. Diese Material-Kombination wird aktuell auch von anderen Forschergruppen  intensiv untersucht.

„Wir haben systematisch die Kennlinien, Dunkelströme sowie die Kapazitäten von solchen Schichtsystemen ausgemessen, und zwar mit unterschiedlich dotierten Siliziumwafern“, erklärt Sara Jäckle, Erstautorin der Arbeit und Doktorandin im Team von Prof. Silke Christiansen (HZB-Institut für Nanoarchitekturen für die Energieumwandlung und Projektleiterin am MPI für die Physik des Lichts, Erlangen). Für einige Messungen arbeitete das Team auch mit der Arbeitsgruppe von Prof. Klaus Lips vom HZB-Institut für Nanospektroskopie zusammen.

Abhängigkeit von der n-Dotierung der Si-Wafer

„Dabei haben wir festgestellt, dass die Dunkelkennlinien sowie die Leerlaufspannung der Solarzellen von der n-Dotierung der Siliziumschicht abhängen. Dieses Verhalten und die Größenordnung der Messwerte passen jedoch überhaupt nicht zu einem typischen Schottky-Kontakt.“

Der Befund ist überraschend, denn n-Silizium ist ein typischer Halbleiter, während PEDOT:PSS üblicherweise als metallisch leitend beschrieben wird. Bislang wurde deshalb angenommen, dass zwischen diesen beiden Materialien ein typischer Metall-Halbleiter-Kontakt besteht, der durch die Schottky-Gleichung beschrieben werden kann.

Typischer Heteroübergang

Doch die Messdaten und der Abgleich mit theoretischen Modellierungen zeigen etwas anderes: Die organische, leitfähige Schicht verhält sich im Kontakt mit n-Silizium nicht wie ein Metall sondern wie ein p-Halbleiter. „Die Messergebnisse hängen von der Stärke der n-Dotierung ab, genau wie bei einem Heteroübergang zwischen einem p-Halbleiter und einem n-Halbleiter“, sagt Sara Jäckle.

Ergebnisse vermutlich auf weitere Hybrid-Systeme übertragbar

„Diese Arbeit betrifft einen ganz wichtigen Aspekt bei solchen hybriden Schichtsystemen, nämlich das Verhalten an der Grenzschicht”, sagt Silke Christiansen. „Die Ergebnisse sind vermutlich auch für andere hybride Systeme gültig, die für die Photovoltaik oder andere optoelektronische Anwendungen interessant sind, beispielsweise auch für Perowskit-Zellen. Sie geben uns neue Hinweise, wie wir gezielt an der Grenzflächenoptimierung arbeiten können”.


Anmerkung: Gerade ist der Sonderforschungsbereich SPP951- Hybrid Inorganic/Organic Systems for Opto-Electronics (HIOS) in die zweite Förderperiode gestartet. In einem Teilprojekt dieses SFBs wird das Team um Silke Christiansen die Forschung an  hybriden Grenzflächen fortsetzen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.