BESSY II launches New Filling Pattern in User Mode

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up.

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up. © HZB

Since July 2015 BESSY II has been providing a new bunch filling pattern in Top-Up mode. It will open new opportunities especially for research teams dealing with time-resolved x-ray experiments. It is of significant importance for us and the community anticipating BESSY VSR.

Apart from ultrafast experiments at the Femtoslicing facility (slicing bunches) and x-ray pump-probe applications with the hybrid (or camshaft) bunch, now also time-of-flight experiments with the ARTOF and other instruments that use the pulse selection of the MHz-Chopper [1]  can be carried out in normal mode.

The new additional bunch in the dark gap arriving 84 ns after the chopper bunch can be transversally excited to support time-resolved Photoelectron- and X-ray spectroscopy based on the PPRE-technique [2]. Having such time-resolved methods at hand in the regular usermode we are even now able to take a glimpse into future operation modes at BESSY VSR.

red.

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
  • Helmholtz Doctoral Award for Hanna Trzesniowski
    News
    09.07.2025
    Helmholtz Doctoral Award for Hanna Trzesniowski
    During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.