BESSY II launches New Filling Pattern in User Mode

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up.

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up. © HZB

Since July 2015 BESSY II has been providing a new bunch filling pattern in Top-Up mode. It will open new opportunities especially for research teams dealing with time-resolved x-ray experiments. It is of significant importance for us and the community anticipating BESSY VSR.

Apart from ultrafast experiments at the Femtoslicing facility (slicing bunches) and x-ray pump-probe applications with the hybrid (or camshaft) bunch, now also time-of-flight experiments with the ARTOF and other instruments that use the pulse selection of the MHz-Chopper [1]  can be carried out in normal mode.

The new additional bunch in the dark gap arriving 84 ns after the chopper bunch can be transversally excited to support time-resolved Photoelectron- and X-ray spectroscopy based on the PPRE-technique [2]. Having such time-resolved methods at hand in the regular usermode we are even now able to take a glimpse into future operation modes at BESSY VSR.

red.

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.