BESSY II launches New Filling Pattern in User Mode

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up.

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up. © HZB

Since July 2015 BESSY II has been providing a new bunch filling pattern in Top-Up mode. It will open new opportunities especially for research teams dealing with time-resolved x-ray experiments. It is of significant importance for us and the community anticipating BESSY VSR.

Apart from ultrafast experiments at the Femtoslicing facility (slicing bunches) and x-ray pump-probe applications with the hybrid (or camshaft) bunch, now also time-of-flight experiments with the ARTOF and other instruments that use the pulse selection of the MHz-Chopper [1]  can be carried out in normal mode.

The new additional bunch in the dark gap arriving 84 ns after the chopper bunch can be transversally excited to support time-resolved Photoelectron- and X-ray spectroscopy based on the PPRE-technique [2]. Having such time-resolved methods at hand in the regular usermode we are even now able to take a glimpse into future operation modes at BESSY VSR.

red.

  • Copy link

You might also be interested in

  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.