Gemeinsames Treffen der Strukturbiologen in Berlin: der 6. Joint-MX-Day am 23. September 2015 am HZB

Proteinkristalle an BESSY II studieren: Dank eines einmaligen Projektes können Studierende der FU Berlin regelmäßig am Snychrotron experimentieren. Das ist nur einer der sichtbaren Erfolge der Kooperation in der Berliner Strukturbiologie. Foto: Silvia Zerbe/HZB

Proteinkristalle an BESSY II studieren: Dank eines einmaligen Projektes können Studierende der FU Berlin regelmäßig am Snychrotron experimentieren. Das ist nur einer der sichtbaren Erfolge der Kooperation in der Berliner Strukturbiologie. Foto: Silvia Zerbe/HZB

Die Hauptstadt hat sich in den letzten Jahren zu einem Hotspot der Strukturbiologie in Deutschland entwickelt. Entscheidend dazu beigetragen hat das hohe Maß an Kooperation zwischen außeruniversitären Forschungseinrichtungen und Universitäten. Aber auch Wissenschaft und Industrie arbeiten in der Strukturbiologie sehr eng zusammen. Am 23. September 2015 findet der 6. Joint-MX-Day statt, bei dem sich Forscher über neue Methoden, Ansätze und Erkenntnisse in der Strukturbiologie austauschen werden.

Erwartet werden bis zu 120 Teilnehmerinnen und Teilnehmer. Seit 2010 kooperieren im Rahmen des Joint-MX-Lab die Humboldt-Universität, die Freie Universität, das Max-Delbrück-Zentrum, das Forschungsinstitut für Molekulare Pharmakologie und das Helmholtz-Zentrum Berlin. Das HZB bietet am Elelektronenspeicherring BESSY II drei Beamlines für die Proteinkristallographie an. Diese teilweise hochautomatisierten Messeinrichtungen werden von ca. 300 Gastforschern pro Jahr genutzt.

Wann und wo?
Uhrzeit: 9 bis 18.30 Uhr
Ort: Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Hörsaal

Programm
Das Programm finden Sie hier. Die Veranstaltung findet in englischer Sprache statt.

Anmeldung
Wer noch an der Veranstaltung teilnehmen möchte, sollte schnellstmöglich eine E-Mail an Frau Bierbaum schicken.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.