Simone Raoux becomes a Professor at Humboldt-Universität zu Berlin

Simone Raoux is a professor at the Department of Physics at HU Berlin and is happy to show students the workings of BESSY II.

Simone Raoux is a professor at the Department of Physics at HU Berlin and is happy to show students the workings of BESSY II.

Prof. Dr. Simone Raoux has accepted the call to the W3-S professorship “Nanospectroscopy for Design and Optimisation of Energy-Related Materials” in the Department of Physics at Humboldt-Universität zu Berlin. The professorship is associated with heading the institute of the same name at the Helmholtz-Zentrum Berlin für Materialien und Energie. Prof. Raoux accepted the call in September 2015.

The physicist has been working at the HZB since January 2014 and is head of the newly formed institute “Nanospectroscopy for Design and Optimisation of Energy-Related Materials”. Her institute works on developing novel nanostructured materials and hybrid materials that hold promise for the conversion and storage of energy. The researchers are looking to design such materials with highly specific, targeted properties to ensure they play a key role in the energy supply of the future.

“In the professorship, I see a big opportunity to expand the good cooperation between HU Berlin and the HZB. I am looking forward to getting students interested in the possibilities of BESSY II and to supervising PhD students,” says Simone Raoux.

As head of the institute, Simone Raoux is also heavily involved in the synthesis and analysis laboratory EMIL, which is currently being set up at the electron storage ring BESSY II and will open soon. The “Energy Materials In-situ Laboratory Berlin”, EMIL for short, will offer unique possibilities for producing and studying energy-related materials. Many synthesis and deposition techniques for producing samples will be available at EMIL. Researchers can then characterise energy-related materials in situ using the synchrotron radiation from BESSY II without interrupting the ultra-high vacuum.

Simone Raoux’s institute is also currently involved in setting up the laboratory platform HEMF (Helmholtz Energy Materials Foundry), which is being funded with a total of 46 million euros (2016–2020). Over the coming years, a large-scale infrastructure will be developed at six Helmholtz Centres for the synthesis and development of novel material systems for energy conversion and storage.

Before joining the HZB, Simone Raoux worked at the IBM T. J. Watson Research Center in Yorktown Heights, New York. There, she studied phase change materials that can be used for storage technologies. The HZB could win her through the Helmholtz Recruiting Initiative. Simone Raoux is an internationally renowned expert for the characterisation of complex materials. She has extensive experience in the application of various spectroscopic and microscopic methods (XRD, XANES, EXAFS, PEEM), which she developed further, among others, at the synchrotron radiation sources ALS at LBNL and NSLS at BNL in the USA. Her work was recognised in 2013 with a fellowship from the American Physical Society.

More information about EMIL.

(sz)

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Nachricht
    24.01.2023
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    14.02.2023
    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Webinar | Ausgezeichnete Solararchitektur: Ausgewählte Projekte aus dem Architekturpreis gebäudeintegrierte Solartechnik 2022
    Nachricht
    17.01.2023
    Webinar | Ausgezeichnete Solararchitektur: Ausgewählte Projekte aus dem Architekturpreis gebäudeintegrierte Solartechnik 2022
    Die Solarenergienutzung an Gebäuden ist ein zentrales Thema auf dem Weg zur Klimaneutralität. Solartechnische Systeme sollten selbstverständliche Bestandteile innovativer Gebäudehüllen wie auch Bausteine energetischer Sanierung sein.