Simone Raoux becomes a Professor at Humboldt-Universität zu Berlin

Simone Raoux is a professor at the Department of Physics at HU Berlin and is happy to show students the workings of BESSY II.

Simone Raoux is a professor at the Department of Physics at HU Berlin and is happy to show students the workings of BESSY II.

Prof. Dr. Simone Raoux has accepted the call to the W3-S professorship “Nanospectroscopy for Design and Optimisation of Energy-Related Materials” in the Department of Physics at Humboldt-Universität zu Berlin. The professorship is associated with heading the institute of the same name at the Helmholtz-Zentrum Berlin für Materialien und Energie. Prof. Raoux accepted the call in September 2015.

The physicist has been working at the HZB since January 2014 and is head of the newly formed institute “Nanospectroscopy for Design and Optimisation of Energy-Related Materials”. Her institute works on developing novel nanostructured materials and hybrid materials that hold promise for the conversion and storage of energy. The researchers are looking to design such materials with highly specific, targeted properties to ensure they play a key role in the energy supply of the future.

“In the professorship, I see a big opportunity to expand the good cooperation between HU Berlin and the HZB. I am looking forward to getting students interested in the possibilities of BESSY II and to supervising PhD students,” says Simone Raoux.

As head of the institute, Simone Raoux is also heavily involved in the synthesis and analysis laboratory EMIL, which is currently being set up at the electron storage ring BESSY II and will open soon. The “Energy Materials In-situ Laboratory Berlin”, EMIL for short, will offer unique possibilities for producing and studying energy-related materials. Many synthesis and deposition techniques for producing samples will be available at EMIL. Researchers can then characterise energy-related materials in situ using the synchrotron radiation from BESSY II without interrupting the ultra-high vacuum.

Simone Raoux’s institute is also currently involved in setting up the laboratory platform HEMF (Helmholtz Energy Materials Foundry), which is being funded with a total of 46 million euros (2016–2020). Over the coming years, a large-scale infrastructure will be developed at six Helmholtz Centres for the synthesis and development of novel material systems for energy conversion and storage.

Before joining the HZB, Simone Raoux worked at the IBM T. J. Watson Research Center in Yorktown Heights, New York. There, she studied phase change materials that can be used for storage technologies. The HZB could win her through the Helmholtz Recruiting Initiative. Simone Raoux is an internationally renowned expert for the characterisation of complex materials. She has extensive experience in the application of various spectroscopic and microscopic methods (XRD, XANES, EXAFS, PEEM), which she developed further, among others, at the synchrotron radiation sources ALS at LBNL and NSLS at BNL in the USA. Her work was recognised in 2013 with a fellowship from the American Physical Society.

More information about EMIL.

(sz)

  • Copy link

You might also be interested in

  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.