Energy storage materials under pressure

The three-dimensional structural network of the ultra-porous and flexible material called DUT-49 can store large amounts of methane. © TU Dresden, Prof. AC1

The three-dimensional structural network of the ultra-porous and flexible material called DUT-49 can store large amounts of methane. © TU Dresden, Prof. AC1

Surprising discovery at BESSY II: the adsorption capacity of MOFs does not rise automatically with increasing pressure

Metal-organic frameworks (MOFs) can store gases such as methane in their surface interstices, or pores. Now teams from the Technische Universität Dresden and Helmholtz-Zentrum Berlin (HZB) have precisely observed the process of gas absorption into these pores under positive pressure at BESSY II for the first time. They discovered a surprising effect: for MOFs reaching a specific pressure level, the gas already adsorbed eruptively escapes because the pores suddenly contract. This suggests many new applications. These observations were possible because the scientists have developed a specialised sample environment. It allows them to adjust the temperature and gas pressure as well as determine the quantity of gas adsorbed during the X-ray studies conducted with the KMC-2 beamline at BESSY II. The results have now been published in Nature.

Methane is considered an ecologically friendly alternative to petrol and diesel fuel, especially if it is able to be produced from solar energy in the future. To fill automobile tanks with methane, suitable materials must be developed that can retain the gas without leakage. Being able to adsorb and store gases in their pores means metal-organic frameworks (known as MOFs) are candidates for this purpose. Now a team from Technische Universität Dresden has developed a MOF by the name of DUT-49. The structure of DUT-49 contains large spaces with diameters of 1.0 – 2.4 nanometres and can therefore adsorb extremely large amounts of methane, more than 300 g of methane per kilogramme of DUT-49 at room temperature. As a result, DUT-49 is being considered for methane storage in automobiles being operated with natural gas or biogas.

Crystal structure of MOFs and gas adsorption under positive pressure investigated at BESSY II

In order to improve this material, the TU Dresden team headed by Professor Dr. Stefan Kaskel has now analysed the pressure and temperature dependence of gas adsorption and release together with the associated structural changes. Working together with experts headed by Dr. Dirk Wallacher (User Platform/Sample Environments) and Dr. Daniel Többens (Energy Materials/Structure and Dynamics) at Helmholtz-Zentrum Berlin, they developed a sample environment that enables the temperature and gas pressure to be adjusted during X-ray studies at BESSY II as well as being able to determine the quantity of gas that has been adsorbed.
They were able to shed light on the crystal structure of the material using X-ray diffraction and X-ray absorption spectroscopy (EXAFS) at the BESSY II KMC-2 beamline, showing where the gas molecules are embedded in the pores of the crystal and how the framework deforms as a result. The sample environment utilised here, which made possible controlled loading of the samples with various gases during measurements (in situ), was specially developed for the KMC-2 beamline under German Federal Ministry of Education and Research (BMBF) Project 05K13OD3. This current BMBF project is a joint effort between TU Dresden, the HZB Sample Environment group, and the HZB Structure and Dynamics of Energy Materials department.


Eruption of gas from the contracting pores

It was discovered that DUT-49 behaves itself far more unusually than expected. When the pressure of the externally fed methane or butane gas is gradually increased, more and more gas molecules are initially adsorbed into the crystal and fill the tiny pores. However, if the gas pressure exceeds a threshold of 10 kilopascals for methane or 30 kilopascals for butane, the material’s structural form closes off. The organic molecules that have stretched the framework become twisted and kinked, causing the pores of the structure to contract. The gas is then eruptively expelled from the material, and the crystal structure shrinks to less than half its volume. The volume of the pores is reduced even more, by about 61 per cent. The structure only gradually re-opens at still higher pressure, with pores of all sizes again filling completely with gas molecules. If the pressure is reduced once again, then the opposite process occurs and the open-pored structure is restored. However, this occurs only at very low pressures, an effect referred to as hysteresis.

Theory provides the answers

Quantum mechanical calculations by two french teams in Paris and Montpellier show that the different shape of the small pores in the closed form is especially favourable for deposition of methane molecules. At very high gas pressure, it is energetically more favourable if more methane is deposited into the large pores. At lower pressures, there is not enough methane present to close the pores.

New potential applications as micro-pneumatic components

Above a pressure threshold, the pores contract so quickly that the gas already adsorbed into the MOF is explosively expelled, raising the gas pressure even higher. After the pores have closed, the structure contains less gas then before, although the gas pressure is higher. This kind of “negative gas adsorption” is quite rare; the behaviour has never been observed in metal-organic frameworks before. It suggests new potential applications such as for the design of micro-pneumatic components in rescue systems, microengineering, and separation processes that react sensitively to changes in environmental pressure.


The results have now been published in Nature: "A pressure-amplifying framework material with negative gas adsorption transitions". Simon Krause, Volodymyr Bon, Irena Senkovska, Ulrich Stoeck, Dirk Wallacher, Daniel M. Többens, Stefan Zander, Renjith S. Pillai, Guillaume Maurin, François-Xavier Coudert & Stefan Kaskel   
Nature (2016), doi:10.1038/nature17430


arö


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While the ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.