Energy Materials: Dr. Catherine Dubourdieu sets up the institute “Functional Oxides for Energy-Efficient Information Technology” at the HZB

Dr. Catherine Dubourdieu is an internationally recognised expert in the field of functional oxides.

Dr. Catherine Dubourdieu is an internationally recognised expert in the field of functional oxides.

The Helmholtz-Zentrum Berlin (HZB) is boosting its energy materials research and setting up a new institute. Through the Helmholtz Recruitment Initiative, the HZB has gained renowned researcher Catherine Dubourdieu as Institute Director. In the newly established institute “Functional Oxides for Energy-Efficient Information Technology”, she is researching into thin films of metal oxides that make especially promising candidates for information technologies of the future. Dubourdieu formerly worked at the institute “Nanotechnologies de Lyon” of the CNRS and has been at the HZB since 11 April 2016.

The physicist is an internationally recognised expert in her field. After holding posts in France and the USA, she is now researching into functional oxides at the HZB. These are thin films of metal oxides that are considered an especially promising class of materials for energy-efficient components. Thin films of different metal oxides stacked together into “sandwich” structures exhibit entirely new mechanical, optical and electromagnetic properties.

The synchrotron source BESSY II offers Catherine Dubourdieu a diverse range of instruments for her energy material research. These include tools for analysing processes in energy materials in situ and in operando. In particular, Dubourdieu will install her own synthesis and analytical chamber in the Energy Materials In situ Laboratory (EMIL). The physicist is also involved in establishing the Helmholtz Energy Materials Foundry (HEMF) at the HZB. There, they are creating ultra-modern laboratories for material synthesis, which will also be available for use by external researchers.

Catherine Dubourdieu will be collaborating closely with other HZB teams who are studying material systems for information technologies, and above all with the institute “Quantum Phenomena in Novel Materials” and the department “Materials for Green Spintronics”.

She will be giving a talk on 23 June at 1 p.m. at the Lise Meitner Campus Wannsee.

Short biography: Catherine Dubourdieu studied and received her PhD degree in physics in Grenoble.  After a postdoctoral fellowship at the Stevens Institute of Technology in Hoboken (New Jersey), she researched at the Laboratoire des Matériaux et du Génie Physique (LMGP) of the CNRS in Grenoble until 2009. Between 2009 and 2012, she was a visiting researcher at the IBM T.J. Watson Research Center in Yorktown Heights (NY, USA). There, she worked in the field of monolithic integration of ferroelectric oxides on silicon with the aim of producing energy-saving logic devices. In June 2012, she moved to the institute “Nanotechnologies de Lyon” of the CNRS, developing new projects for functional oxide research.

About the Helmholtz Recruitment Initiative
The Helmholtz Recruitment Initiative is the research organisation’s programme to support joint appointments with universities and to promote outstanding scientists. Selection criteria include, for example, internationally recognised excellence and an international background. The initiative is equal opportunity.


You might also be interested in

  • BESSY II: Localisation of d-electrons determined
    Science Highlight
    BESSY II: Localisation of d-electrons determined
    Transition metals have many applications in engineering, electrochemistry and catalysis. To understand their properties, the interplay between atomic localisation and delocalisation of the outer electrons in the d orbitals is crucial. This insight is now provided by a special end station at BESSY II with highest precision, as demonstrated by a study of copper, nickel and cobalt with interesting quantitative results. The Royal Society of Chemistry has selected the paper as a HOT Article 2022.
  • 40 years of research with synchrotron light in Berlin
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.

  • New road towards spin-polarised currents
    Science Highlight
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.