Helmholtz Innovation Labs: HySPRINT at HZB

HZB will be setting up the new Helmholtz HySPRINT Innovation Lab for jointly developing new combinations of materials and processes in energy applications with commercial partners. Silicon and metal-organic perovskite crystals will be the centre point of the Lab’s work. The Helmholtz Association is supporting the project for the next five years with 1.9 million Euros from its Initiative and Networking Fund, with additional contributions from HZB itself as well as from industry.

The Helmholtz Association is supporting a total of seven Helmholtz Innovation Labs in order to strengthen the transfer of research results to the applications domain. The Association is making about twelve million Euros available over the next five years for setting up and operating the Innovation Labs.

The HZB proposal was selected from a field of 27 competing applications. HySPRINT stands for “Hybrid Silicon Perovskite Research, Integration & Novel Technologies”. It will focus on hybrid materials and components based on silicon and perovskite crystals able to be employed for energy conversion in photovoltaics as well as for solar hydrogen production.

“We intend to further develop silicon hybrid technology, liquid-phase crystallisation of silicon, nano-print lithography as well as the implementation of prototypes by means of 3D techniques for microcontacts in cooperation with industrial partners – and demonstrate the potential for industrial-scale production”, says Professor Bernd Rech from the HZB Institute for Silicon Photovoltaics.

The Innovation Lab will be set up as a core lab at HZB and will work closely with the HZB Institute PVcomB. Professor Anke Kaysser-Pyzalla, Scientific Director of HZB poitbs out: “HySPRINT will establish itself as a creative pillar of Technology Transfer at HZB and within the Helmholtz Association.”

red.


You might also be interested in

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).