Graphen auf Halbleitersubstrat als Kandidat für Spintronik

Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen.

Die Illustration zeigt, wie die Goldatome unter dem Graphen sitzen. © HZB

Ein elektrischer Strom kann die Spins im Graphen beeinflussen: a) Ohne Goldatome bleiben die Elektronenspins erhalten. b) Durch die Nähe zu Goldatomen drehen sich die Spins nach 40 Nanometern um 180 Grad. Dieser Effekt kann auf einem Halbleitersubstrat genutzt werden.

Ein elektrischer Strom kann die Spins im Graphen beeinflussen: a) Ohne Goldatome bleiben die Elektronenspins erhalten. b) Durch die Nähe zu Goldatomen drehen sich die Spins nach 40 Nanometern um 180 Grad. Dieser Effekt kann auf einem Halbleitersubstrat genutzt werden. © HZB

Graphen auf Siliziumkarbid könnte ein interessantes Materialsystem für künftige spintronische Bauelemente werden.  Durch eingeschleuste Goldatome kann die Spin-Bahn-Wechselwirkung punktuell so stark erhöht werden, dass sich die Spins kontrollieren lassen. Dies zeigen erste Ergebnisse an BESSY II, die nun in den Applied Physics Letters veröffentlicht sind. 

Dieses Ergebnis hat in der Zwischenzeit zu einigen Durchbrüchen geführt, die bislang jedoch einen Haken hatten: Die Unterlage, auf der die Graphenschicht abgeschieden wurde, war metallisch! Die Gold-Atome wurden zwischen Graphen und einer Unterlage aus Nickel eingeschleust. Dadurch erhöhte  sich die so genannte Spin-Bahn-Wechselwirkung um den Faktor 10.000. Für einen Effekt dieser Größe weiß man aus Rechnungen, dass sich die Spins der Elektronen systematisch drehen: alle 40 Nanometer um 180 Grad. Dennoch war es nicht möglich, mit den Spins Informationen zu übertragen. Denn da die Unterlage (Nickel) elektrisch leitfähig ist, fließen gleichzeitig viele Elektronen mit ganz ungeordneten Spins. Wegen dieses „Kurzschlusses“ lässt sich auf Nickel-Substraten der Effekt nicht nutzen.

„Reine“ Probe auf Halbleitersubstrat

Dies gelang den beiden HZB-Forschern nun in Graphen, das diesmal auf Siliziumkarbid, einem halbleitenden Substrat, abgeschieden wurde. Die Herausforderung war hier, beim Einschleusen der Goldatome eine gleichmäßige Verteilung zu erreichen. Denn in Bereichen mit nur wenigen Goldatomen lädt sich das Graphen negativ auf; in Bereichen mit mehr Goldatomen lädt es sich positiv auf und wird zum Lochleiter. Es war ausgesprochen schwierig, erinnert sich Marchenko, Erstautor der Arbeit, Proben mit ausschließlich positiver Dotierung herzustellen. Schließlich konnte er eine rein positive Probe mit spinaufgelöster Photoelektronen-Spektroskopie an BESSY II untersuchen. 

Große Effekte nur in der Nähe von Hot Spots

Das Gold-dotierte Graphen auf Siliziumkarbid zeigte dabei ein anderes Verhalten als auf Metall-Substraten. Die Erhöhung der Spin-Bahn-Kopplung um vier Größenordnungen tritt hier nur in der Nähe von bestimmten „Hot Spots“ auf: nämlich dort, wo sich die Energieniveaus von Graphen und Gold treffen.

Spin-Effekte an- und ausschalten

Damit sich diese hohe Spin-Bahn-Wechselwirkung nutzen lässt, um Spins tatsächlich zu transportieren, müsste man das Graphen demnach mit einem zweiten Element positiv dotieren oder eine zusätzliche Gate-Spannung anlegen, die diese „Hot Spots“ energetisch auf die Fermi-Energie anhebt. „Eine kleine Spannung würde schon ausreichen, um Spin-Effekte an- oder auszuschalten“, sagt Marchenko.


Zur Publikation:Rashba splitting of 100 meV in Au-intercalated graphene on SiC, D. Marchenko, A. Varykhalov, J. Sánchez-Barriga, Th. Seyller and O. Rader. Appl. Phys. Lett. 108, 172405 (2016); http://dx.doi.org/10.1063/1.4947286

arö


Das könnte Sie auch interessieren

  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.