Koexistenz von Supraleitung und Ladungsdichtewellen beobachtet

Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist.

Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist. © MPI Stuttgart

Physiker haben an BESSY II ein Materialsystem aus dünnen ferromagnetischen und supraleitenden Schichten untersucht. An den Grenzflächen bildeten sich Ladungsdichtewellen aus, die erstaunlich weit in die supraleitende Schicht hineinreichten. Die Ergebnisse zeigen neue Wege auf, um die Supraleitung zu beeinflussen und sind nun in Nature Materials publiziert.

Hochtemperatursupraleiter sind seit gut 30 Jahren bekannt: es sind besondere Metalloxid-Verbindungen, die Strom ohne Energieverlust leiten können. Anders als konventionelle Supraleiter müssen sie dafür nicht bis nahe an den absoluten Temperatur-Nullpunkt gekühlt werden. Vielmehr schaffen sie dies bei vergleichsweise hohen Temperaturen.

Ein typischer Hochtemperatursupraleiter ist Yttrium-Barium-Kupferoxid (YBaCuO) mit einer Sprungtemperatur von 92 Kelvin (minus 181 Grad Celsius). Das Kühlen mit flüssigem Stickstoff reicht aus, um diese Temperatur zu unterschreiten. Ein Team um Prof. Bernhard Keimer vom MPI für Festkörperforschung in Stuttgart und Dr. Eugen Weschke vom HZB haben nun in einem System aus dünnen YBaCuO- sowie ferromagnetischen Nanoschichten entdeckt, wie sich Valenzelektronen verschieben lassen.

Kleinste kollektive Verschiebungen der Ladungen beobachtet

Mit resonanter Röntgenstreuung haben sie an BESSY II die Grenzflächen zwischen den ferromagnetischen und supraleitenden Schichten untersucht. Alex Frano konnte in seiner Doktorarbeit nachweisen, dass es sich dabei die Valenzelektronen in den Kupferatomen der YBaCuO-Dünnschicht minimal verschieben. Diese Verschiebungen führen zu so genannten Ladungsdichtewellen in der YBaCuO-Schicht, und zwar nicht nur in der unmittelbaren Nähe der Grenzflächen sondern über die gesamte Dicke der Schicht. „Das ist erstaunlich, weil frühere Untersuchungen gezeigt hatten, dass Supraleitung die Ausbildung von Ladungsdichtewellen unterdrückt“, erklärt Frano.

Ladungsdichtewelle trotz Supraleitung stabil

„Indem wir die Grenzflächen in die Heterostrukturen gebracht haben, ist es gelungen die Ladungsdichtewellen in Gegenwart der Supraleitung zu stabilisieren“, erläutert Eugen Weschke. Die YBaCuO-Schichten bleiben supraleitend, obwohl sich gleichzeitig die Ladungsdichten periodisch ändern. „Wie genau diese Koexistenz auf mikroskopischer Skala aussieht, ist eine spannende Frage, die mit weiteren Experimenten untersucht werden muss“, so der HZB-Forscher. Besonders interessant wäre es herauszufinden, ob man über diesen Mechanismus und durch weiteres geschicktes Design der Grenzflächen den supraleitenden Zustand gezielt kontrollieren kann.

Original-Publikation:

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces, A. Frano, S. Blanco-Canosa, E. Schierle, Y. Lu, M. Wu, M. Bluschke, M. Minola, G. Christiani, H. U. Habermeier, G. Logvenov, Y. Wang, P. A. van Aken, E. Benckiser, E. Weschke, M. Le Tacon & B. Keimer, Nature Materials (2016) doi: 10.1038/nmat4682

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Helmholtz-Nachwuchsgruppe am HZB zu Perowskit-Solarzellen
    Nachricht
    26.06.2025
    Neue Helmholtz-Nachwuchsgruppe am HZB zu Perowskit-Solarzellen
    Silvia Mariotti kehrt als Leiterin der neuen Helmholtz-Nachwuchsgruppe „Perowskit-basierte Mehrfachsolarzellen“ an das HZB zurück. Die Perowskit-Expertin, die zuvor an der Universität Okinawa in Japan tätig war, will die Entwicklung von Mehrfachsolarzellen aus verschiedenen Perowskit-Schichten vorantreiben.
  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.
  • Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Nachricht
    20.06.2025
    Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Am 28. Juni ist es wieder so weit: Die Lange der Wissenschaften findet von 17 - 0 Uhr in Berlin und auch in Adlershof statt. Werfen Sie einen Blick hinter die Kulissen unserer spannenden Forschung!