User Community Science: Soft decoupling of organic molecules on metal

The illustration shows how iodine (purple) is embedded between the organic layer and the metal, thus reducing adhesion.

The illustration shows how iodine (purple) is embedded between the organic layer and the metal, thus reducing adhesion. © IFM, University of Linköping

An international team has discovered an elegant way to decouple organic nanosheets grown on metal surfaces. After iodine intercalation, measurements at the synchrotron source BESSY II of Helmholtz-Zentrum Berlin (HZB) showed that a network of organic molecules behaved almost as it was free-standing. The strong influence of the metal on the network was reduced. This opens up new ways to transfer organic nanostructures from metal surfaces onto more suitable substrates for molecular electronics.  The results have been published in “Angewandte Chemie”.

Specific organic molecules – typically on reactive metallic surfaces – can interlink via chemical bond formation into extended nanostructures. Highly stable two-dimensional molecular networks can be grown in this manner. However, these networks then adhere to the metallic support, which also strongly influences their properties. To make use of these kinds of organic networks in molecular electronics, for instance, the metal would have to be laboriously removed.

Iodine vapour reduces adhesion

Now a team headed by Markus Lackinger at the Technische Universität München and the Deutsches Museum together with partners at other universities in Germany and Sweden have discovered an elegant way to reduce the adhesion between the network and the metal. They simply exposed the networks bound to the metal to iodine vapour. “After the networks had been synthesized on a silver surface, we used iodine vapour. We hoped iodine would embed between the organic layer and the metal”, explains Lackinger. To do this, they investigated a nanosheet consisting of interlinked phenyl rings (polyphenylene) on a silver surface. The iodine actually migrated beneath the interlinked phenyl rings to form an atomically thin interlayer on the metal surface. After the intercalation of the iodine, measurements at BESSY II proved that the molecular network behaved almost as if it was detached. The strong influence of the metal was reduced.

Application: New transfer techniques

These results could be advantageous for future applications. “Molecular nanosheets do not grow on any surface. For this reason, we have to develop transfer techniques. Then we could fabricate the networks on metal surfaces and subsequently transfer them over to other surfaces that are more suitable for molecular electronics. Being able to mitigate the adhesion with an iodine interlayer is possibly a first step in this direction”, explains Lackinger.

Publication: Post-Synthetic Decoupling of On-Surface Synthesized Covalent Nanostructures from Ag(111) Atena Rastgoo-Lahrood, Jonas Björk, Matthias Lischka, Johanna Eichhorn, Stephan Kloft, Massimo Fritton, Thomas Strunskus, Debabrata Samanta, Michael Schmittel, Wolfgang M. Heckl, Markus Lackinger, Angew. Chem. Int. Ed.. doi: 10.1002/anie.201600684

arö

  • Copy link

You might also be interested in

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.