Sound artist Gerriet K. Sharma designs sound sculptures of BESSY VSR

 Gerriet K. Sharma is setting up the icosahedral loudspeaker, photo: Kristijan Smok (izlog)

 Gerriet K. Sharma is setting up the icosahedral loudspeaker, photo: Kristijan Smok (izlog)

From 13 to 19 July 2016, the artist will be recording sounds on location

The electron storage ring BESSY II is the backdrop for an extraordinary art project. Sound artist Gerriet K. Sharma of the University of Music and Performing Arts Graz will translate the principles of accelerator physics into three-dimensional acoustic compositions. From 13 to 19 July 2016, the artist will be on location to record sounds directly in the electron storage ring. 

The electron storage ring BESSY II is the backdrop for an extraordinary art project. Sound artist Gerriet K. Sharma of the University of Music and Performing Arts Graz will translate the principles of accelerator physics into three-dimensional acoustic compositions. From 13 to 19 July 2016, the artist will be on location to record sounds directly in the electron storage ring. 

Gerriet K. Sharma found inspiration for this work in the expansion project BESSY VSR. Accelerator experts at HZB want to expand the synchrotron radiation source BESSY II into a variable-pulse-length storage ring – as the first team to do so worldwide. Each measuring station will then offer a choice between long and short light pulses. The artist has been working on this extraordinary project together with HZB researchers since the spring of 2016, to transform accelerator physics into an extraordinary 3D sound experience.

To generate the unique soundscapes of BESSY VSR, Gerriet K. Sharma is using an icosahedral loudspeaker. The acoustic figures it produces move almost physically through the room. “The combination of art and science is very prominent in this project. Both work with frequencies, amplitudes and overlays – just in different media,” says Kerstin Berthold, who is supervising the art project at HZB together with researchers from the Institute for Accelerator Physics.

After many months of intensive compositional work, the artist plans to present his work in the summer of 2017.

Notice for employees:
While he is working at BESSY II, the artist will be sampling tone and sound sequences in the ring, foyer and auditorium. Please understand that it may briefly get a little louder than usual, at times.

Project partners:

Gerriet K. Sharma (artist)
studied media art at the Academy of Media Arts Cologne, and composition and computer music at the University of Music and Performing Arts Graz. He is currently writing his doctoral thesis at the renowned art university in Graz on “Composing Sculptural Sound Phenomena in Computer Music”.  Among other distinctions, he received the 2008 German Soundart Award.

Helmholtz Zentrum Berlin

Institute for Accelerator Physics

Paul Goslawski, Godehard Wüstefeld and Martin Ruprecht

Communication Departement

Kerstin Berthold

(kb/sz)


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.