Energie speichern mit Silizium-Dünnschichten - Neue Hinweise für das Design von Silizium-Lithium-Akkus durch Neutronenmessungen

Lithium-Ionen wandern durch den Elektrolyten (gelb) in die Schicht aus kristallinem Silizium (c-Si) ein. Im Lauf der Beladung bildet sich eine 20 Nanometer dünne Schicht (rot) in der Silizium-Elektrode, die extrem viele Lithium-Atome aufnimmt. Skizze: HZB

Lithium-Ionen wandern durch den Elektrolyten (gelb) in die Schicht aus kristallinem Silizium (c-Si) ein. Im Lauf der Beladung bildet sich eine 20 Nanometer dünne Schicht (rot) in der Silizium-Elektrode, die extrem viele Lithium-Atome aufnimmt. Skizze: HZB © HZB

Lithium-Ionen-Akkus könnten ihre Kapazität theoretisch versechsfachen, wenn ihre Anode statt aus Graphit aus Silizium bestünde. Ein HZB-Team hat erstmals mit Neutronenmessungen detailliert beobachtet, wie Lithium-Ionen in Silizium einwandern. Ihre Arbeit zeigt, dass schon extrem dünne Silizium-Schichten ausreichen, um eine maximale Beladung mit Lithium zu ermöglichen. Die Arbeit ist in der Zeitschrift ACSnano der American Chemical Society veröffentlicht.

Lithium-Ionen-Akkus versorgen mobile Rechner, Smartphones und Tablets zuverlässig mit Energie. Elektroautos dagegen kommen mit den gängigen Lithium-Ionen-Akkus noch nicht sehr weit. Das liegt an den zurzeit verwendeten Elektroden aus Graphitschichten. Diese können nur eine begrenzte Anzahl von Lithium-Ionen einlagern, so dass sich die Kapazität der aktuellen Lithium-Ionen-Akkus kaum weiter steigern lässt. Daher sind Halbleitermaterialien wie Silizium als Alternative zum Graphit im Gespräch. Silizium ist in der Lage, enorme Mengen an Lithium aufzunehmen. Allerdings zerstört das Einwandern der Lithium-Ionen die Kristallstruktur des Siliziums. Dabei kann das Volumen auf das Dreifache anschwellen, was zu großen mechanischen Spannungen führt.

Mit Neutronen beim Aufladen beobachtet

Nun hat ein Team aus dem HZB-Institut für weiche Materie und funktionale Materialien unter Leitung von Prof. Dr. Matthias Ballauff erstmals eine Halbzelle aus Lithium und Silizium beim Be- und Entladen direkt beobachtet. „Mit der Methode der Neutronenreflektometrie konnten wir präzise verfolgen, wo sich Lithium-Ionen in der Silizium-Elektrode einlagern und auch, wie schnell sie sich bewegen“, sagt Dr. Beatrix-Kamelia Seidlhofer, die die Experimente an der Neutronenquelle im Institut Laue-Langevin durchgeführt hat.

Lithiumreiche Zone nur 20 Nanometer dick

Dabei fanden sie zwei unterschiedliche Zonen. Nahe der Grenzfläche zum Elektrolyten bildet sich eine etwa 20 Nanometer dünne Schicht mit extrem hohem Lithium-Gehalt: Auf zehn Silizium-kommen 25 Lithium-Atome. Daran schließt sich eine zweite lithiumärmere Schicht an. Hier kommt auf zehn Silizium-Atome nur noch ein Lithium-Atom. Beide Schichten zusammen sind nach dem zweiten Ladezyklus weniger als 100 Nanometer dick.

Sechsfache Kapazität theoretisch erreichbar

Nach dem Entladen bleibt in der Silizium-Grenzschicht zum Elektrolyten etwa ein Lithium-Ion pro Silizium-Platz in der Elektrode zurück. Damit errechnet Beatrix-Kamelia Seidlhofer, dass die theoretisch maximale Kapazität solcher Silizium-Lithium-Batterien bei etwa 2300 Milliamperestunden/Gramm liegt. Das ist mehr als das Sechsfache der theoretisch maximal erreichbaren Kapazität bei einem Lithium-Ionen-Akku, der mit Graphit arbeitet (372 mAh/g).

Weniger ist mehr

Aus dieser Arbeit ergeben sich sehr konkrete Hinweise für das Design von guten Silizium-Elektroden: Sehr dünne Siliziumfilme müssten demnach völlig ausreichen, um maximal viel Lithium aufzunehmen, was wiederum Material und vor allem Energie bei der Herstellung spart.

Zur Publikation: Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity, ACS Nano. Beatrix-Kamelia Seidlhofer, Bujar Jerliu, Marcus Trapp, Erwin Hüger, Sebastian Risse, Robert Cubitt, Harald Schmidt, Roland Steitz, and Matthias Ballauff.

http://pubs.acs.org/doi/abs/10.1021/acsnano.6b02032

DOI: 10.1021/acsnano.6b02032

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.