European project for thin film Kesterite Solar cells has reached its goals

<span class="st">&nbsp;</span>


Eleven partners from different countries have joined forces in the EU-research project KESTCELLS from September 2012 until 31. August 2016. The mission was to train a new generation of experts and to increase the efficiencies of Kesterite solar cells. Now, at the end of the project, these goals have been perfectly reached.

Fourteen young scientists have become experts in the field and the cooperation managed to increase the efficiencies of Kesterite solar cells up to 11.8 %. This is even more than the 10 % threshold fixed as initial objective. HZB-scientists Iver Lauermann, Susan Schorr and Thomas Unold have been participating in the KESTCELLS-Project as Principal Investigators. The project was funded with 3.7 Million Euros by the European Union.

More information:

In 2012 the European Commission identified a significant lack of academic institutions in Europe able to train new researchers in the field of thin based solar cells based on earth abundant materials. Being aware of this, the Research Executive Agency (REA) funded KESTCELLS with 3.7M€ to develop an ambitious program for training 14 researchers in 11 different institutions covering from Research Centers and Universities to Industries all around Europe.

For four years the partners of this ITN-network have worked with a double objective; in first place making a significant advance in the kesterite research of Thin-Film PV technologies. This field offers a set of advantages such as a low consumption of raw materials, development of highly automated and efficient manufacturing processes, low carbon footprint and better performances at elevated temperatures than the standard counterparts. Actually, it is expected that these technologies will lead PV research in the next years.

Secondly, the project has trained 12 PhD students and 2 experienced researchers recruited among more than three hundred candidates all around the world 

All in all, the project has allowed publishing more than fifty papers in peer review articles, and supported 6 Theses. From a scientific point of view, it has also made a significant step forward in the characterization of fundamental properties of kesterites that will allow understanding the main challenges on these materials and a contribution to a strategy to overcome them in the mid-term.

In fact, the design and development of new kesterite based solar cells with an efficiency of 11.8% has been achieved, which is beyond the 10% threshold fixed as initial objective of the project.  The project has contributed to the competitiveness of the European PV Industry, helping to increase the production of energy through renewable sources according to the 20/20/20 target established by the European Commission and the SET-Plan.

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no [316488]. Sole responsibility lies with the authors and the European Commission is not responsible for any use that may be made of the information contained therein.


You might also be interested in

  • Rhombohedral graphite as a model for quantum magnetism
    Science Highlight
    Rhombohedral graphite as a model for quantum magnetism
    Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.
  • 8th World Conference on PV Energy Conversion
    8th World Conference on PV Energy Conversion
    The WCPEC-8 woll take place from 26 – 30 September 2022 in the Milano Convention Centre in Milan, Italy.
    Also scientists from PVcomB will present latest results about their research work to photovoltaics.

  • 40 years of research with synchrotron light in Berlin
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.