Nanotechnology for energy materials: Electrodes like leaf veins

SEM – model of a metallic nano-network with periodic arrangement ( left) and visual representation of a fractal pattern (right).

SEM – model of a metallic nano-network with periodic arrangement ( left) and visual representation of a fractal pattern (right). © M. Giersig/HZB

Nano-sized metallic wires are attracting increasing attention as conductive elements for manufacturing transparent electrodes, which are employed in solar cells and touch screen panels. In addition to high electric conductivity, excellent optical transmittance is one of the important parameters for an electrode in photovoltaic applications. An international team headed by HZB scientist Prof. Michael Giersig has recently demonstrated for these applications that networks of metallic mesh possessing fractal-like nano-features surpass other metallic networks in utility. These findings have now been published in the most recent edition of the renowned journal Nature Communications.

Their new  development is based on what  is termed quasi-fractal nano-features. These structures have similarities to the hierarchical networks of veins in leaves. Giersig’s team was able to show that metallic networks with these features optimise performance of electrodes for several applications. They combine minimized surface coverage with ultra-low total resistance while maintaining uniform current density. In addition, it was demonstrated   that these networks, inspired by nature, can surpass the performance of conventional indium tin oxide (ITO) layers. In experiments on artificially constructed electrode networks of different topologies, the scientists established that non-periodic hierarchical organisation exhibited lower resistance as well as excellent optical transmittance in comparison to periodic organisation. This led to elevated output power for photovoltaic components.

“On the basis of our studies, we were able to develop an economical transparent metal electrode", says Giersig, continuing “We obtain this by integrating two silver networks. One silver network is applied with a broad mesh spacing between the micron-diameter main conductors that serve as the “highway" for electrons transporting electrical current over macroscopic distances.” Next to it, additional randomly distributed nano-wire networks serve as local conductors to cover the surface between the large mesh elements. “These smaller networks act as regional roadways beside the highways to randomise the directions and strengths of the local currents, and also create refraction effects to improve transparency above that of classical shadow-limited performance”, according to Giersig. “Solar cells based upon these electrodes show exceptional a high efficiencies”.

Publication: Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics; Nature Communications, 7, 12825; doi:10.1038/ncomms12825


red./HS

  • Copy link

You might also be interested in

  • New HZB magazine "Lichtblick" has been published
    News
    18.09.2025
    New HZB magazine "Lichtblick" has been published
    In the new issue, we introduce our new commercial managing director. We also show how important exchange is to us: science thrives on fruitful exchange with others. But dialogue with the public is also very important to us. Art can also create enriching access to science and build bridges. All these topics are covered in the new issue of Lichtblick.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.