Methodenentwicklung an BESSY II: Standard-Röntgenspiegel nun auch für ultraschnelle Experimente einsetzbar

Die R&ouml;ntgenreflektivit&auml;t des Mo/Si Multilagenspiegels wird durch den um &Delta;<em>t</em> zeitversetzten Laserpuls stark ver&auml;ndert.

Die Röntgenreflektivität des Mo/Si Multilagenspiegels wird durch den um Δt zeitversetzten Laserpuls stark verändert. © HZB

Elektronische, magnetische und strukturelle Prozesse in Energiematerialien finden auf Zeitskalen zwischen Femtosekunden und 100 Pikosekunden statt. Um solche Prozesse zu beobachten, wird die Probe mit einem ersten Lichtpuls angeregt und dann mit einem zeitlich verzögerten Abfragepuls „abgetastet“. Dabei ist es allerdings entscheidend, dass der zeitliche Überlapp beider ultrakurzen Lichtpulse exakt bekannt ist. Nun hat ein Team vom HZB und der Universität Potsdam eine neue und überraschend simple Lösung gefunden, um auch bei Lichtpulsen mit unterschiedlichen Wellenlängen, z.B. aus dem Infrarot- und Röntgenbereich, den zeitlichen Überlapp genau zu messen: Sie setzen dafür einen Standard-Röntgenspiegel ein, der auch sonst in BESSY II  verwendet wird. Der Spiegel besteht aus alternierenden Nanolagen von Molybdän und Silizium, die durch Laseranregung dynamisch ihre Dicke ändern, was sich auf die Reflektivität des Spiegels auswirkt.

In jedem zeitaufgelösten Anregungs-Abfrage-Experiment (Pump-Probe) ist die genaue Kenntnis vom zeitlichen und räumlichen Überlapp der Anrege- und Abfragepulse auf der Probe eine unverzichtbare Voraussetzung. Das Problem des zeitlichen Überlapps wurde in der Laser-Community zwar bereits mit Hilfe von nichtlinearen Kristallen gelöst. Es ist aber damit nicht möglich, diesen Überlapp auch bei Lichtpulsen aus ganz unterschiedlichen Spektralbereichen, so wie Röntgen- und sichtbares Licht, zu bestimmen.

Kohärente Gitterdynamik

Das wichtigste Ziel für das Team des Helmholtz-Zentrum Berlin und der Universität Potsdam war es, eine möglichst vielseitige und schnelle Kreuzkorrelationsmethode für ein breites Spektrum an Röntgen- und sichtbaren Photonen sowie für alle an BESSY II verfügbaren Zeitskalen von 100 fs bis 100 ps zu finden. Sie wählten hierfür einen Molybdän-Silizium (Mo/Si) Multilagen-Spiegel, der für den Weichröntgenbereich optimiert wurde. Der Spiegel besteht aus alternierenden Lagen von metallischem Molybdän und halbleitendem Silizium von jeweils nur wenigen Nanometern Dicke. Durch diese Multilagenstruktur enstehen sogenannten Übergitter-Bragg-Peaks in der Röntgendiffraktion, welche von etwa 100 eV bis in den harten Röntgenbereich mit einer Reflektivität von bis zu 70 Prozent detektierbar sind.

Die Experimentatoren benutzen einen Laser mit 50 fs kurzen Pulsen bei einer Wellenlänge von 800 nm  (nahes Infrarot), um selektiv nur die Molybän-Lagen in dem Mo/Si Spiegel optisch anzuregen. Das ultraschnelle Heizen von nur jeder zweiten Lage führt zu einer quasi-instantanen Erzeugung von kohärenten akustischen Phononen, welche die Reflektivität des Spiegels gleich auf zwei unterschiedlichen Zeitskalen stark verändert. Zuerst kommt es zu einer sehr schnellen Oszillation der Bragg-Peak-Intensität mit einer Amplitude von bis zu 10 Prozent und einer Periode von nur 600 fs. Anschließend verschiebt sich der Bragg-Peak auf einer Zeitskale von 10 ps bis hin zu Nanosekunden mit einer transienten Signaländerung von bis zu 20 Prozent. Beide Effekte bieten eine einfache Möglichkeit, um den zeitlichen Überlapp zwischen Röntgen- und Laserpulsen über verschiedene Zeitskalen hinaus zu finden.

Einfache Umsetzung

Das präsentierte Konzept funktioniert nicht nur für einen breiten Bereich von Photonenenergien, sondern lässt sich auch ohne Änderungen der Probenumgebungen implementieren, da die laser-induzierte Gitterdynamik unabhängig von äußeren Feldern oder Temperaturänderungen ist und somit sogar unter atmosphärischen Bedingungen gemessen werden kann. Des weiteren sind Mo/Si-Spiegel extrem widerstandsfähig gegenüber Laser- und Röntgeneinfluss oder Oxidation. Durch die Möglichkeit, die Spiegelparameter problemlos anzupassen sowie durch das tiefgreifende Verständnis der ultraschnellen Gitterdynamik in Multilagenstrukturen kann das Konzept für spezielle Anwendungen weiter optimiert und angepasst werden.

Erfolgreicher Einsatz

Kürzlich wurde der Mo/Si-Kreuzkorrelator bereits an der UE52/SGM in der Transmissions-NEXAFS-Kammer erfolgreich angewendet, um den zeitlichen Überlapp zwischen dem BESSY II Hybridbunch und Laserpulsen des neuen MHz-Lasers präzise zu bestimmen. In Zukunft wird der BESSY VSR Modus Röntgenpulse mit einer Dauer von nur wenigen Pikosekunden ständig an allen Strahlrohren für immer mehr Experimente in der Zeitdomäne bereitstellen.

Zur Publikation: "Versatile soft X-ray-optical cross-correlator for ultrafast applications",  Daniel Schick, Sebastian Eckert, Niko Pontius, Rolf Mitzner, Alexander Föhlisch, Karsten Holldack and Florian Sorgenfrei, Structural Dynamics (2016)
DOI: 10.1063/1.4964296

Das könnte Sie auch interessieren

  • Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Nachricht
    20.05.2022
    Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Die Röntgenquelle BESSY II befindet sich in einem dreimonatigen Shutdown. In dieser Zeit wird die Niederspannungshauptverteilung im Versorgungsgebäude außerhalb des Elektronenspeicherrings erneuert. Dies sichert den langfristigen stabilen Betrieb von BESSY II über das nächste Jahrzehnt hinaus.

  • Wärmedämmung für Quantentechnologien
    Science Highlight
    19.05.2022
    Wärmedämmung für Quantentechnologien
    Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.
  • Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Science Highlight
    17.05.2022
    Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.