Die Herstellung von CIGS-Solarzellen beschleunigen

Am Kompetenz-Zentrum Photovoltaik soll mit den Fördergeldern ein Verdampfungsprozess optimiert werden, damit sich CIGS-Module schneller industriell fertigen lassen. Foto: HZB

Am Kompetenz-Zentrum Photovoltaik soll mit den Fördergeldern ein Verdampfungsprozess optimiert werden, damit sich CIGS-Module schneller industriell fertigen lassen. Foto: HZB

Die CIGS-Dünnschichtphotovoltaik lässt sich gut in Gebäudefassaden integrieren. Foto: Manz AG

Die CIGS-Dünnschichtphotovoltaik lässt sich gut in Gebäudefassaden integrieren. Foto: Manz AG

Bundeswirtschaftsministerium fördert Projekt speedCIGS mit 4,7 Millionen Euro

Ein Projektkonsortium aus Forschung und Industrie hat unter Beteiligung des Photovoltaik-Kompetenzzentrums (PVcomB) des Helmholtz-Zentrums Berlin ein großes Drittmittelprojekt eingeworben. Das Projekt „speedCIGS“ wird vom Bundeswirtschaftsministerium mit 4,7 Millionen Euro über vier Jahre gefördert, davon gehen 1,7 Millionen Euro an das HZB. Mit dem Geld wollen die Projektpartner den Herstellungsprozess für CIGS-Dünnschichtsolarzellen beschleunigen und die Technologie attraktiver für die Industrie machen.

Das Projekt speedCIGS wird in Zusammenarbeit mit dem Anlagenbauer Manz AG, dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden Württemberg ZSW, den Universitäten Jena und Paderborn, dem Max Planck Institut Dresden und der Wilhelm Büchner Hochschule (Projektkoordinator) realisiert.

CIGS-Solarzellen bestehen aus Kupfer, Indium, Gallium und Selen. Mit der Förderung soll am PVcomB ein Koverdampfungsprozess optimiert werden, um CIGS-Schichten für Dünnschichtsolarzellen herzustellen. Die Elemente werden bei diesem Prozess gemeinsam im Vakuum auf ein geheiztes Substrat abgeschieden und bilden dort eine dünne Schicht der gewünschten Verbindung. Der am PVcomB verwendete Herstellungsprozess wird bereits in der Industrie eingesetzt, aber er läuft derzeit noch relativ langsam ab. Im speedCIGS-Projekt soll dieser Prozess beschleunigt werden, damit bei gleichen Investitionskosten mehr Module pro Zeiteinheit produziert werden können. Dadurch könnte die Herstellung von CIGS-Solarmodulen deutlich günstiger werden, was der Technologie in der angespannten Marktlage einen Wettbewerbsvorteil verschaffen würde.

Am PVcomB soll zudem ein transparentes p-leitendes Material entwickelt werden, das einen entscheidenden Beitrag zur Entwicklung von hocheffizienten, auf CIGS-basierenden Tandemsolarzellen leisten soll.

Bereits heute zeichnen sich polykristalline CIGS-Solarzellen insbesondere durch einen hohen Wirkungsgrad und hohe Energieerträge aus. Ein weiterer Vorteil ist das ästhetisch ansprechende Erscheinungsbild der Module, die sich gut in die Gebäudearchitektur integrieren lassen.

(sz/il)

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.