Research for Germany’s energy transition: EMIL@BESSY II approved for the Kopernikus “Power-to-X” project

The new Energy Materials In-Situ Laboratory (EMIL) offers direct access to hard and soft synchrotron x-ray radiation to investigate the chemical and electronic properties of catalysts and other energy materials. <br />

The new Energy Materials In-Situ Laboratory (EMIL) offers direct access to hard and soft synchrotron x-ray radiation to investigate the chemical and electronic properties of catalysts and other energy materials.
© HZB

The storage of excess solar and wind power is one of the greatest challenges in Germany’s energy transition. To address this, the German Federal Ministry for Education and Research (BMBF) has created the “Power-to-X” (P2X) project under its Kopernikus programme. P2X will advance research into converting electrical energy from the sun and wind into basic chemical compounds, gaseous energy media, and fuels. A total of 17 research institutions, 26 industrial enterprises, as well as three non-governmental organisations are involved, and the BMBF is funding the first development phase of the project at a level of 30 million Euros. The Helmholtz-Zentrum Berlin will participate in the planned research, using the advanced synthesis capabilities and the BESSY II synchrotron-based X-ray characterization tools at the recently inaugurated EMIL@BESSY II laboratory complex.

Solar and wind power fluctuate based on seasonal and diurnal cycles as well as on the weather. For that reason, one of the most important requirements for the success of the energy transition is the development of efficient energy storage solutions. The BMBF’s Kopernikus “Power-to-X” (P2X) project will promote technological advancements that electrochemically convert excess solar and wind power into gaseous energy media, like hydrogen, or into basic chemical compounds that can then be subsequently stored or processed further into fuels and chemical products. P2X technologies of this kind will make a pivotal contribution to the energy transition. The Kopernikus P2X project is expected to bring new technological developments to industrial maturity within ten years.

The HZB is making available unique means of synthesis and characterisation at its recently launched Energy Materials In-Situ Laboratory (EMIL) in Berlin. The working groups of Prof. Bernd Rech and Prof. Marcus Bär will participate: “We will use the versatile and complementary analytical techniques at the EMIL laboratory to investigate the chemical and electronic properties of catalysts developed by the project partnering organisations,” explains Bär, who is coordinating the P2X activities at the HZB.

The changes that catalyst materials undergo in electrolytes, under realistic conditions, will be an important focus of their attention. Simulating real-world operating conditions as closely as possible is vitally important, because catalytically active species are often only generated under actual operating conditions. Their stability determines the aging processes and thus the operating life of the electrolyser. “We will further augment the experimental facilities of the EMIL laboratory under the Kopernikus programme in order to facilitate these kinds of “operando” studies under real atmospheric conditions,” Bär elaborates.

Industrial partnering organisations are supplementing the support from the BMBF with research contributions worth an additional 8.3 million Euros. P2X will result in the organisation of a research network that incorporates existing large-scale projects and current infrastructure, while expanding connections to industry. The project is being jointly coordinated by RWTH Aachen University, Forschungszentrum Jülich, and DECHEMA.

For further information, please visit the BMBF page at: https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html (German only).

red.

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Nachricht
    24.01.2023
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    14.02.2023
    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.