Research for Germany’s energy transition: EMIL@BESSY II approved for the Kopernikus “Power-to-X” project

The new Energy Materials In-Situ Laboratory (EMIL) offers direct access to hard and soft synchrotron x-ray radiation to investigate the chemical and electronic properties of catalysts and other energy materials. <br />

The new Energy Materials In-Situ Laboratory (EMIL) offers direct access to hard and soft synchrotron x-ray radiation to investigate the chemical and electronic properties of catalysts and other energy materials.
© HZB

The storage of excess solar and wind power is one of the greatest challenges in Germany’s energy transition. To address this, the German Federal Ministry for Education and Research (BMBF) has created the “Power-to-X” (P2X) project under its Kopernikus programme. P2X will advance research into converting electrical energy from the sun and wind into basic chemical compounds, gaseous energy media, and fuels. A total of 17 research institutions, 26 industrial enterprises, as well as three non-governmental organisations are involved, and the BMBF is funding the first development phase of the project at a level of 30 million Euros. The Helmholtz-Zentrum Berlin will participate in the planned research, using the advanced synthesis capabilities and the BESSY II synchrotron-based X-ray characterization tools at the recently inaugurated EMIL@BESSY II laboratory complex.

Solar and wind power fluctuate based on seasonal and diurnal cycles as well as on the weather. For that reason, one of the most important requirements for the success of the energy transition is the development of efficient energy storage solutions. The BMBF’s Kopernikus “Power-to-X” (P2X) project will promote technological advancements that electrochemically convert excess solar and wind power into gaseous energy media, like hydrogen, or into basic chemical compounds that can then be subsequently stored or processed further into fuels and chemical products. P2X technologies of this kind will make a pivotal contribution to the energy transition. The Kopernikus P2X project is expected to bring new technological developments to industrial maturity within ten years.

The HZB is making available unique means of synthesis and characterisation at its recently launched Energy Materials In-Situ Laboratory (EMIL) in Berlin. The working groups of Prof. Bernd Rech and Prof. Marcus Bär will participate: “We will use the versatile and complementary analytical techniques at the EMIL laboratory to investigate the chemical and electronic properties of catalysts developed by the project partnering organisations,” explains Bär, who is coordinating the P2X activities at the HZB.

The changes that catalyst materials undergo in electrolytes, under realistic conditions, will be an important focus of their attention. Simulating real-world operating conditions as closely as possible is vitally important, because catalytically active species are often only generated under actual operating conditions. Their stability determines the aging processes and thus the operating life of the electrolyser. “We will further augment the experimental facilities of the EMIL laboratory under the Kopernikus programme in order to facilitate these kinds of “operando” studies under real atmospheric conditions,” Bär elaborates.

Industrial partnering organisations are supplementing the support from the BMBF with research contributions worth an additional 8.3 million Euros. P2X will result in the organisation of a research network that incorporates existing large-scale projects and current infrastructure, while expanding connections to industry. The project is being jointly coordinated by RWTH Aachen University, Forschungszentrum Jülich, and DECHEMA.

For further information, please visit the BMBF page at: https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html (German only).

red.


You might also be interested in

  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.
  • Girls on Tour at the Long Night of Science: Be there!
    News
    17.05.2023
    Girls on Tour at the Long Night of Science: Be there!
    Are you a 10th to 13th grade student interested in mathematics and science? Then secure your free VIP ticket for a tour with exciting experiments and insights during the Long Night of Science! Meet female scientists who are passionate about making our world a better place! 17.06. , from 5.30 pm, Adlershof Research Campus.