Research for Germany’s energy transition: EMIL@BESSY II approved for the Kopernikus “Power-to-X” project

The new Energy Materials In-Situ Laboratory (EMIL) offers direct access to hard and soft synchrotron x-ray radiation to investigate the chemical and electronic properties of catalysts and other energy materials. <br />

The new Energy Materials In-Situ Laboratory (EMIL) offers direct access to hard and soft synchrotron x-ray radiation to investigate the chemical and electronic properties of catalysts and other energy materials.
© HZB

The storage of excess solar and wind power is one of the greatest challenges in Germany’s energy transition. To address this, the German Federal Ministry for Education and Research (BMBF) has created the “Power-to-X” (P2X) project under its Kopernikus programme. P2X will advance research into converting electrical energy from the sun and wind into basic chemical compounds, gaseous energy media, and fuels. A total of 17 research institutions, 26 industrial enterprises, as well as three non-governmental organisations are involved, and the BMBF is funding the first development phase of the project at a level of 30 million Euros. The Helmholtz-Zentrum Berlin will participate in the planned research, using the advanced synthesis capabilities and the BESSY II synchrotron-based X-ray characterization tools at the recently inaugurated EMIL@BESSY II laboratory complex.

Solar and wind power fluctuate based on seasonal and diurnal cycles as well as on the weather. For that reason, one of the most important requirements for the success of the energy transition is the development of efficient energy storage solutions. The BMBF’s Kopernikus “Power-to-X” (P2X) project will promote technological advancements that electrochemically convert excess solar and wind power into gaseous energy media, like hydrogen, or into basic chemical compounds that can then be subsequently stored or processed further into fuels and chemical products. P2X technologies of this kind will make a pivotal contribution to the energy transition. The Kopernikus P2X project is expected to bring new technological developments to industrial maturity within ten years.

The HZB is making available unique means of synthesis and characterisation at its recently launched Energy Materials In-Situ Laboratory (EMIL) in Berlin. The working groups of Prof. Bernd Rech and Prof. Marcus Bär will participate: “We will use the versatile and complementary analytical techniques at the EMIL laboratory to investigate the chemical and electronic properties of catalysts developed by the project partnering organisations,” explains Bär, who is coordinating the P2X activities at the HZB.

The changes that catalyst materials undergo in electrolytes, under realistic conditions, will be an important focus of their attention. Simulating real-world operating conditions as closely as possible is vitally important, because catalytically active species are often only generated under actual operating conditions. Their stability determines the aging processes and thus the operating life of the electrolyser. “We will further augment the experimental facilities of the EMIL laboratory under the Kopernikus programme in order to facilitate these kinds of “operando” studies under real atmospheric conditions,” Bär elaborates.

Industrial partnering organisations are supplementing the support from the BMBF with research contributions worth an additional 8.3 million Euros. P2X will result in the organisation of a research network that incorporates existing large-scale projects and current infrastructure, while expanding connections to industry. The project is being jointly coordinated by RWTH Aachen University, Forschungszentrum Jülich, and DECHEMA.

For further information, please visit the BMBF page at: https://www.bmbf.de/de/sicher-bezahlbar-und-sauber-2624.html (German only).

red.


You might also be interested in

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.
  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups.