Helmholtz-Zentrum Berlin etabliert Helmholtz-Nachwuchsgruppe zur elektrochemischen Umwandlung von Kohlenstoffdioxid

Dr. Matthew Mayer

Dr. Matthew Mayer

Dr. Matthew T. Mayer von der École Polytechnique Fédérale de Lausanne (EPFL), Schweiz, wird eine Helmholtz-Nachwuchsgruppe auf dem Gebiet der Energie-Material-Forschung am HZB aufbauen. Er wird erforschen, wie sich mithilfe von erneuerbaren Energien Kohlenstoffdioxid und Wasser elektrochemisch in Kohlenwasserstoffe wie Methan oder Methanol  umwandeln lassen. Für den Aufbau seiner Nachwuchsgruppe erhält Matthew Mayer 300.000 Euro pro Jahr für einen Zeitraum von fünf Jahren.

Die Forschung steht vor der großen Herausforderung, neue Lösungsansätze zur Reduzierung des klimaschädlichen Ausstoßes von Kohlenstoffdioxid zu entwickeln. Eine Möglichkeit  ist es, die erneuerbare Energien zu nutzen, um Kohlenstoffdioxid und Wasser elektrochemisch umzuwandeln. Dadurch sollen Kohlenwasserstoffe wie Methan, Methanol oder Ethylen entstehen, die wichtige Rohstoffe für die chemische Industrie sind. Die größte Herausforderung dabei ist, die Energieeffizienz, die Reaktionsgeschwindigkeit und die Ausbeute bei der CO2-Katalyse zu verbessern.

Matthew T. Mayer will nun neuartige Elektrokatalyse-Materialien mit heterogenen Bimetall-Oberflächen herstellen. Mit der Synchrotron-, Röntgen- und Photoelektronen-Spektroskopie will der promovierte Chemiker die katalytischen Prozesse in-situ und in operando betrachten und detaillierte chemische Informationen über die Katalysator-Molekül-Wechselwirkung erhalten. Dadurch will Mayer neue Einblicke in katalytische Mechanismen und die Grundsätze der Zellenentwicklung gewinnen, die ein gezieltes Design von Katalysatoren ermöglichen sollen. Diese Erkenntnisse sollen helfen, das Potenzial der elektrochemischen CO2-Reduktion als Technologie für die Bereitstellung von Kohlenwasserstoffen auszuloten.

„Mit Dr. Matthew Mayer gewinnen wir einen sehr profilierten Wissenschaftler, dessen Forschungsgebiet hervorragend unsere Projekte in der Energie-Material-Forschung ergänzt. Seine Arbeit wird von den vielseitigen Analyse- und Synthesemöglichkeiten am HZB profitieren, insbesondere durch die Kombination mit dem brillanten Röntgenlicht von BESSY II“, sagt Prof. Dr. Anke Kaysser-Pyzalla, wissenschaftliche Geschäftsführerin am HZB.  

Der US-Amerikaner Matthew T. Mayer studierte Chemie an der Boise State University, USA, und promovierte am Boston Collage. Zurzeit leitet er an der École Polytechnique Fédérale de Lausanne die Gruppe „Solare Brennstoffe“ im Labor für Photonik und Grenzflächen, das von Prof. Dr. Michael Graetzel geführt wird. Dort erforscht Matthew T. Mayer, wie man Sonnenlicht direkt in Brennstoffe umwandeln kann. Zuvor arbeitete er mehrere Jahre am Boston College in den USA. Er hält zwei Patente und hat zahlreiche Publikationen veröffentlicht. Er wird im Mai 2017 an das HZB kommen, um seine Nachwuchsgruppe aufzubauen.

Gleich zwei neue Helmholtz-Nachwuchsgruppen gehen 2017 an den Start

Das HZB war bei der Ausschreibung der Helmholtz-Nachwuchsgruppen in 2016 besonders erfolgreich. In einem hoch kompetitiven Verfahren wurden aus 49 Anträgen dreizehn neue Nachwuchsgruppen in der Helmholtz-Gemeinschaft bewilligt, darunter zwei vom HZB. Neben Matthew T. Mayer konnte das HZB einen weiteren Wissenschaftler gewinnen: Dr. Antonio Abate will mit seiner Nachwuchsgruppe die Langzeitstabilität für Perowskit-Solarzellen verbessern.

Über das Programm "Helmholtz-Nachwuchsgruppen"

Das Förderprogramm richtet sich an hoch qualifizierte Nachwuchskräfte, deren Promotion zwei bis sechs Jahre zurückliegt. Die Nachwuchsgruppenleiterinnen und -leiter werden durch ein maßgeschneidertes Fortbildungs- und Mentoring-Programm unterstützt und sollen eine langfristige Perspektive am Zentrum erhalten. Ein Ziel des Programms ist es, die Vernetzung von Helmholtz-Zentren und Universitäten zu stärken. Die Kosten – 300.000 Euro pro Gruppe über einen Zeitraum von fünf Jahren – werden je zur Hälfte aus dem Impuls- und Vernetzungsfonds des Helmholtz-Präsidenten und den Helmholtz-Zentren gedeckt.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).
  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.