Helmholtz-Zentrum Berlin is establishing a Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide

Dr. Matthew Mayer

Dr. Matthew Mayer

Dr. Matthew T. Mayer from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, will be putting together a Helmholtz Young Investigator Group in the field of energy materials research at HZB. He will be researching into how carbon dioxide and water can be converted electrochemically into hydrocarbons such as methane and methanol using renewable energies. Matthew Mayer will receive 300,000 euros per year over a period of five years for establishing and running his Young Investigator Group.

Researchers are faced with the major challenge of developing new solutions for reducing the harmful emissions of carbon dioxide into our environment. One feasible solution is to use clean energy that will convert carbon dioxide and water electrochemically into hydrocarbons such as methane, methanol and ethylene, which are important raw materials for the chemical industry. The biggest hurdle will be improving the energy efficiency, reaction rates and yields from CO2 catalysis.

Research chemist Matthew T. Mayer is looking to produce novel electrocatalyst materials possessing heterogeneous bimetallic surfaces. Using synchrotron, X-ray and photoelectron spectroscopy, he will be observing these catalytic processes in situ and in operando in order to reveal detailed chemical information about the catalyst–molecule interactions in real time. In this way, Mayer wishes to deliver new insights into guided catalyst design, catalytic mechanisms and principles of cell design. These insights should help to reveal the potential of electrochemical CO2 reduction as a technology for producing valuable hydrocarbons.

“With Dr. Matthew Mayer, we are gaining a highly distinguished scientist whose field of research superbly complements our projects in energy materials research. His work will benefit from the many facilities for analysis and synthesis at HZB, and especially from their combination with the brilliant X-ray light from BESSY II,” says Prof. Dr. Anke Kaysser-Pyzalla, scientific director of HZB. 

Matthew T. Mayer is from the U.S., where he studied chemistry at Boise State University and earned his doctorate at Boston College. He currently heads the “Solar Fuels” group at the Laboratory of Photonics and Interfaces, led by Prof. Dr. Michael Graetzel at the École Polytechnique Fédérale de Lausanne. In this group, Matthew T. Mayer is investigating how sunlight can be converted directly into fuels. Prior to this, he conducted research for several years at Boston College in the USA. He holds two patents and has published numerous papers. He will be arriving at HZB to put together his Young Investigator Group in May 2017.

Two new Helmholtz Young Investigator Groups kick off in 2017

In 2016, HZB was especially successful in bidding for Helmholtz Young Investigator Groups. In a highly competitive process with 49 applications, thirteen new Young Investigator Groups in the Helmholtz Association were approved, two of which are from HZB. Alongside Matthew T. Mayer, HZB has acquired Dr. Antonio Abate, whose Helmholtz Young Investigator Group aims to improve the long-term stability of perovskite solar cells.

 About the Helmholtz Young Investigators Programme

The research programme fosters highly qualified young researchers who completed their doctorate three to six years ago. The heads of the Young Investigator Groups receive support through a tailored training and mentoring programme and are assured long-term prospects at HZB. One aim of the programme is to strengthen the networking of Helmholtz centres and universities. The costs – 300,000 euros per year per group over five years – are covered half by the Helmholtz President’s Initiative and Networking Fund, and half by the Helmholtz centres.

(sz)

You might also be interested in

  • 40 years of research with synchrotron light in Berlin
    News
    14.09.2022
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.

  • New road towards spin-polarised currents
    Science Highlight
    08.09.2022
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.
  • BESSY II resumes operation after a long shutdown
    News
    25.08.2022
    BESSY II resumes operation after a long shutdown
    On 30 August, BESSY II ligth source will resume user operation: the research centre will then welcome guest researchers from all over the world and support them in their various experiments. The 14-week  shutdown was the longest in BESSY II history. Among other works, the main supply was completely renewed. The successful completion of the work was celebrated with all those involved.