Graduiertenschule MatSEC geht in die nächste Runde

<p class="MsoPlainText"></p> <p><strong>&nbsp;</strong>

 

Promotionsvorhaben nun auch zu Breitband-Halbleitermaterialien und Thermoelektrika

Die ersten vier Studierenden der Graduiertenschule MatSEC (Materials for Solar Energy Conversion) haben erfolgreich ihre Promotion abgeschlossen. Nun geht die gemeinsam mit der Dahlem Research School der Freien Universität Berlin organisierte Graduiertenschule in die nächste Runde und hat neue Promotionsstellen ausgeschrieben. Dabei erweitert sich das Forschungsportfolio, das bisher auf Kesterite konzentriert war. Doktorarbeiten sind nun auch zu Breitband-Halbleitermaterialien für die solare Energiewandlung und Thermoelektrika möglich.

MatSEC ist die erste Graduiertenschule, die das HZB 2013 unter dem Dach der Dahlem Research School und in Zusammenarbeit mit mehreren Universitäten der Region aufgebaut hat. „Wir führen die Graduiertenschule MatSEC nun mit einem deutlich breiteren Forschungsportfolio weiter“, erklärt Prof. Dr. Susan Schorr, die Sprecherin der Graduiertenschule. Dabei setzen die Organisatoren nicht nur auf die Zusammenarbeit mit den bewährten Einrichtungen, sondern haben neue, internationale Kooperationspartner gewonnen: Mit dem Weizmann-Institute of Science in Rehovot und der Hebrew University in Jerusalem engagieren sich nun auch zwei renommierte Forschungseinrichtungen aus Israel für MatSEC.

Im Sommersemester 2013 und Wintersemester 2013/2014 hatten die ersten sieben Doktorandinnen und Doktoranden an der neu eingerichteten Graduiertenschule MatSEC mit ihrer Promotion begonnen. Im Dezember 2016 promovierten jetzt die ersten vier: Anna Ritscher an der Technischen Universität Berlin, Marcel Quennet und Laura Elisa Valle Rios an der Freien Universität Berlin sowie Kai Neldner an der Freien Universität Berlin.

Die jungen Wissenschaftlerinnen und Wissenschaftler haben sich in ihren Arbeiten mit Kesteriten befasst, einem quaternären Verbindungshalbleiter, der als Absorbermaterial in Dünnschichtsolarzellen geeignet ist. Während Marcel Quennet sich mit „first principle calculations“ einem theoretischen Thema zugewandt hatte, arbeiteten Anna Ritscher, Laura Elisa Valle Rios und Kai Neldner experimentell, wobei sie auch die Instrumentierung an den beiden Großgeräten des HZB genutzt haben. Ihre Ergebnisse sind bereits in anerkannten Fachzeitschriften publiziert. Weitere Promotionsabschlüsse werden im Frühjahr 2017 erwartet: Leonard Köhler hat seine Promotionsarbeit bereits an der BTU Cottbus-Senftenberg abgegeben, Anastasia Irkina und Martin Handwerk stehen kurz vor deren Abschluss.

Promotion am HZB in Graduiertenschulen

Das HZB bietet Promotionen in derzeit vier Graduiertenschulen in Zusammenarbeit mit Universitäten der Region an. Das Themenspektrum der Graduiertenschulen fokussiert auf die Erforschung von verschiedenen Materialien für die Energieumwandlung. Promotionsvorhaben sind grundsätzlich in allen Themenfeldern möglich, in denen das HZB forscht.

Mit dem sukzessiven Aufbau der Graduiertenschulen setzt das HZB eine zentrale Forderung aus den Promotionsleitlinien der Helmholtz-Gemeinschaft um. Zukünftig sollen alle Promotionsvorhaben am HZB in gemeinsam mit Universitäten organisierten Graduiertenschulen verankert werden.

Weitere Informationen zur Graduiertenschule MatSEC (Materials for Solar Energy Conversion):

Die neuen Promotionsstellen von MatSEC werden aktuell auf der Seite Stellenangebote ausgeschrieben.

(arö/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.