Keywords: cooperations (139) accelerator physics (174) technology transfer (48)

News    11.01.2017

7.4 million euros from the EFRE fund: HZB is setting up a new application laboratory for developing superconducting accelerator components

The application laboratory “SupraLab@HZB” is funded by the EFRE Fonds.

A complex infrastructure will be set up at the SupraLab@HZB for testing the superconducting cavities and developing entire installable modules.

Helmholtz-Zentrum Berlin is receiving 7.4 million euros from the European Regional Development Fund (EFRE). The money is being used to set up the application laboratory “SupraLab@HZB” for the advancement of high-current superconducting cavities. These components will be needed for operating the next generation of novel, high-performance light sources. The laboratory will also provide complex superconducting component test beds for use by companies and research institutes in the region.

“We are very grateful for the funding from EFRE, and thank in particular the State of Berlin for supporting our application. With SupraLab@HZB, we will achieve a milestone in the development of pioneering accelerator technology. The creation of this application laboratory will generate know-how for future accelerators and novel lightsources. The development of this key technology also presents attractive economic opportunities for the research and industrial landscape of Berlin,” says Prof. Dr. Anke Kaysser-Pyzalla, scientific director of HZB.   

To set up the new application laboratory, HZB is applying its internationally renowned expertise in the development of continuous wave (CW) superconducting accelerator components. “The advantage of these CW superconducting cavities is that they permanently apply a very high accelerator field and at the same time provide the freedom to optimise the geometry for high-current mode. So not only do they accelerate a high electron current; they also offer a practically freely selectable time structure (pulse sequence) of the current. Thanks to the EFRE funding, we now have the opportunity to develop this technology a great deal further until it is ready for application in light sources,” says Prof. Dr. Jens Knobloch, head of the HZB institute “SRF – Science and Technology” (ISRF), which has assumed the scientific direction of the SupraLab.

The HZB researchers aim to use this technology as part of the upgrade of BESSY II into a variable pulse length storage ring, BESSY VSR. For the first time, high-current superconducting cavities will be used to produce long and short pulses (in the picosecond range) of high-brilliancy light simultaneously in the one storage ring. Flexibly selectable pulse lengths will go a long way to resolving many unanswered questions in research. They will allow materials for energy conversion, for example, or future energy-efficient data storage (spintronics) to be studied more thoroughly and developed further than ever before.

For the SupraLab@HZB, the researchers want to develop and qualify not only cavities but also entire installable modules. Developing these superconducting modules, however, will require enormous technical effort. Accordingly, a complex infrastructure will be set up at the SupraLab@HZB for testing the cavities and systems. Plans include investments in cryogenic systems and high-frequency emitters, among other things. Once complete, the application laboratory will promote lasting technology transfer and cooperation with regional and national companies.

The project is being funded from the European Regional Development Fund as of 1 January 2017, and will run until the end of 2019. Helmholtz-Zentrum Berlin is contributing an equal sum from its own means. Thus, a total of 14.8 million euros is available for setting up the new application laboratory SupraLab@HZB.

Clips about BESSY VSR

- about the project

- about the principle and the problem of BESSY VSR




You might also be interested in
  • <p>HZB-Teams are exploring and developing new technologies for perovskite based solar cells in the innovation lab HySPRINT.</p>NEWS      16.05.2019

    LAUNCH OF EPKI: European Perovskite Initiative for the development of Perovskite based solar technology

    Perovskite based solar cells have made tremendous progress over the last decade achieving lab-scale efficiencies of 24.2% early 2019 in single-junction architecture and up to 28% in tandem (perovskite associated with crystalline silicon), turning it into the fastest-advancing solar technology to date. With the HySPRINT project and the recruitment of highly talented young scientists, Helmholtz-Zentrum Berlin has built up a considerable research capacity in the field of perovskite materials in recent years and is participating in the European Perovskite Initiative EPKI that has now been launched. [...]

  • NEWS      15.05.2019

    The HZB at INTERSOLAR in Munich

    The Helmholtz-Zentrum Berlin (HZB) will present itself from 15 to 17 May at INTERSOLAR in Munich, the world's largest solar trade fair. The HZB is one of the world's leading research centres in the field of solar energy and presents the latest developments in photovoltaics and solar fuels. The HZB offers a wide range of cooperation opportunities for companies - from contract research to joint research projects. [...]

  • <p>The enzyme MHETase is a huge and complex molecule. MHET-molecules from PET plastic dock at the active site inside the MHETase and are broken down into their basic building blocks.</p>SCIENCE HIGHLIGHT      12.04.2019

    "Molecular scissors" for plastic waste

    A research team from the University of Greifswald and Helmholtz-Zentrum-Berlin (HZB) has solved the molecular structure of the important enzyme MHETase at BESSY II. MHETase was discovered in bacteria and together with a second enzyme - PETase - is able to break down the widely used plastic PET into its basic building blocks. This 3D structure already allowed the researchers to produce a MHETase variant with optimized activity in order to use it, together with PETase, for a sustainable recycling of PET. The results have been published in the research journal Nature Communications. [...]