20 participants join the first Photon School at HZB

From 14 to 24 March, the first Photon School takes place at HZB. 20 students from 8 countries get an unique opportunity for a first-hand training covering a wide range of experimental and theoretical methods for probing the molecular structure, function, and dynamics of complex material systems. Leading experts from all fields of spectroscopy give lectures, share their latest results, and present future research strategies.

The Photon School comprises of a 5 days learning course and 4 days hands-on measurements in small groups at several experimental stations at HZB and at the Laser Lab at Freie Universität Berlin. The Photon School includes a one-day simulation exercise where participants perform standard calculations of spectra, and develop an understanding of how experimentalists and theoreticians work together.

The school is intended for students in chemistry, physics, and physical chemistry. Although it is the first Photon School at HZB, there was a strong demand for the 20 places (more than 150 applications). It is organized by the institute “Methods for Material Development” of HZB.

(sf/sz)

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.