Christiane Becker erhält Professur an der Hochschule für Technik und Wirtschaft Berlin

Prof. Dr. Christiane Becker lehrt an der Hochschule für Technik und Wirtschaft Berlin und forscht am HZB.

Prof. Dr. Christiane Becker lehrt an der Hochschule für Technik und Wirtschaft Berlin und forscht am HZB.

Prof. Dr. Christiane Becker hat einen Ruf auf eine W2-Professur für das Fachgebiet „Experimentalphysik mit den Schwerpunkten Materialwissenschaften und Photonik“ an der Hochschule für Technik und Wirtschaft (HTW) erhalten. Sie leitet seit Oktober 2012 eine vom Bundesforschungsministerium geförderte Nachwuchsgruppe am HZB.

Gemeinsam mit ihrem Team entwickelt Christiane Becker nano- und mikrostrukturierte Silizium-Bauelemente für Anwendungen in der Photovoltaik und der Photonik. Sie setzt dabei auf besonders einfache und kostengünstige Herstellungsprozesse, die für eine spätere industrielle Produktion geeignet sind. „Unser Fokus liegt auf hochskalierbaren Fabrikationsmethoden, unter anderem auf der Entwicklung der Nanoimprint-Lithographie und der Silizium-Verdampfung“, sagt die Leiterin der Nachwuchsgruppe Nano-Sippe. Der Name ihrer Gruppe leitet sich aus der englischen Bezeichnung für „Nanostructured SIlicon for Photonic and Photovoltaic ImplEmentations ab. Christiane Beckers Team arbeitet dabei eng mit Industrieunternehmen zusammen und hält mehrere Patente.

„Ich freue mich über die Berufung, weil sie eine langfristige Perspektive für meine Forschung bietet, und danke dem HZB für die Unterstützung. Die HTW bietet mir ein anregendes Umfeld und ich freue mich, dass ich mich weiterhin in der Lehre und Ausbildung von Studierenden engagieren kann“, sagt die Physikerin. Durch die gemeinsame Berufung von HTW und HZB wird Christiane Becker auch weiter am HZB mit ihrer Nachwuchsgruppe forschen.

Christiane Becker promovierte 2006 am Karlsruhe Institut für Technologie (KIT) mit einer Arbeit zur nichtlinearen Optik photonischer Kristalle. Im Anschluss wechselte sie an das Institut für Silizium-Photovoltaik des HZB und warb 2012 erfolgreich die Förderung für ihre BMBF-Nachwuchsgruppe ein. Im Jahr 2014 wurde Christiane Becker auf eine befristete W2-Professur an die HTW berufen, die im März 2017 in eine Dauerprofessur umgewandelt wurde.

Weitere Informationen zur Nachwuchsgruppe Nano-Sippe

Informationen zur Lehrtätigkeit von Christiane Becker an der Hochschule für Technik und Wirtschaft

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.