Foundation stone laying ceremony for an energy research laboratory on Wannsee campus

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu andMonica Wurfbaum (from left to right). Photo: HZB/J. Bierbaum

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu andMonica Wurfbaum (from left to right). Photo: HZB/J. Bierbaum

A milestone has been reached in the expansion of energy materials research at the Lise-Meitner Campus: on 23 March 2017, the celebration was held for laying the foundation stone of a laboratory building that will offer a multitude of methods for synthesising and characterising energy materials.

Construction has been ongoing since the beginning of the year: In Wannsee, a new building is being built for energy research in the scope of the Helmholtz Energy Materials Foundry (HEMF). It is expected to be completed already in December 2017. Numerous employees and construction partners celebrated the laying of the foundation stone for the flexibly usable laboratory complex together with the scientific project manager and HZB management. It has two storeys, on each of which 135 square-metre spaces will be available for physical chemistry. The Institute for Functional Oxides for Energy Efficient Information Technologies (EM-IFOX) will occupy the ground floor.

Prof. Dr. Anke Kaysser-Pyzalla stressed: “The construction of the new laboratory building is an important future project for the Wannsee campus, and perfectly complements the existing research facilities for energy materials research. With it, we are in particular expanding our portfolio in material synthesis. This is crucial prerequisite for targetedly developing energy materials with useful functions and properties.” 

The HZB project manager for the Helmholtz Energy Materials Foundry, Prof. Dr. Roel van de Krol, explained that the laboratory is for developing materials and applications for energy-efficient IT, and materials for the conversion of carbon dioxide into valuable hydrocarbons for the chemicals industry. “These topics are not only very exciting and challenging research fields; they also count among the key problems that must be solved for the transition to an efficient and climate-friendly energy supply of the future.”

In EM-IFOX, institute director Dr. Catherine Dubourdieu and her team will be researching together on metal oxides. These materials have a broad spectrum of electric, magnetic, optical and mechanical properties. “These tremendously useful properties offer an enormous potential for developing new components that are extremely efficient and possess new functions. Our aim is to develop these functional oxides further to cover a greater range of applications. We want them to become as versatile as the widespread semiconductor heterostructures are today,” says Dr. Catherine Dubourdieu.

What exactly Mrs. has planned, and what synthesis and characterisation capabilities the laboratory will have, is explained here.

(sz)


You might also be interested in

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.
  • HySPRINT Photovoltaics Lab inaugurated
    News
    20.06.2024
    HySPRINT Photovoltaics Lab inaugurated
    After around four years of renovation, photovoltaics research groups moved into their offices in Kekuléstraße on 20 June 2024. With the reopening, the building has also been given a new name that makes the research more visible: it is now called HySPRINT Photovoltaics Lab.