Foundation stone laying ceremony for an energy research laboratory on Wannsee campus

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu andMonica Wurfbaum (from left to right). Photo: HZB/J. Bierbaum

Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. Roel van de Krol, Dirk Mielke, Dr. Catherine Dubourdieu andMonica Wurfbaum (from left to right). Photo: HZB/J. Bierbaum

A milestone has been reached in the expansion of energy materials research at the Lise-Meitner Campus: on 23 March 2017, the celebration was held for laying the foundation stone of a laboratory building that will offer a multitude of methods for synthesising and characterising energy materials.

Construction has been ongoing since the beginning of the year: In Wannsee, a new building is being built for energy research in the scope of the Helmholtz Energy Materials Foundry (HEMF). It is expected to be completed already in December 2017. Numerous employees and construction partners celebrated the laying of the foundation stone for the flexibly usable laboratory complex together with the scientific project manager and HZB management. It has two storeys, on each of which 135 square-metre spaces will be available for physical chemistry. The Institute for Functional Oxides for Energy Efficient Information Technologies (EM-IFOX) will occupy the ground floor.

Prof. Dr. Anke Kaysser-Pyzalla stressed: “The construction of the new laboratory building is an important future project for the Wannsee campus, and perfectly complements the existing research facilities for energy materials research. With it, we are in particular expanding our portfolio in material synthesis. This is crucial prerequisite for targetedly developing energy materials with useful functions and properties.” 

The HZB project manager for the Helmholtz Energy Materials Foundry, Prof. Dr. Roel van de Krol, explained that the laboratory is for developing materials and applications for energy-efficient IT, and materials for the conversion of carbon dioxide into valuable hydrocarbons for the chemicals industry. “These topics are not only very exciting and challenging research fields; they also count among the key problems that must be solved for the transition to an efficient and climate-friendly energy supply of the future.”

In EM-IFOX, institute director Dr. Catherine Dubourdieu and her team will be researching together on metal oxides. These materials have a broad spectrum of electric, magnetic, optical and mechanical properties. “These tremendously useful properties offer an enormous potential for developing new components that are extremely efficient and possess new functions. Our aim is to develop these functional oxides further to cover a greater range of applications. We want them to become as versatile as the widespread semiconductor heterostructures are today,” says Dr. Catherine Dubourdieu.

What exactly Mrs. has planned, and what synthesis and characterisation capabilities the laboratory will have, is explained here.

(sz)

You might also be interested in

  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.
  • World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency
    News
    19.12.2022
    World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency
    The current world record of tandem solar cells consisting of a silicon bottom cell and a perovskite top cell is once again at HZB. The new tandem solar cell converts 32.5 % of the incident solar radiation into electrical energy. The certifying institute European Solar Test Installation (ESTI) in Italy measured the tandem cell and officially confirmed this value which is also included in the NREL chart of solar cell technologies, maintained by the National Renewable Energy Lab, USA.
  • On the way to mass production: perovskite silicon tandem cells
    News
    14.12.2022
    On the way to mass production: perovskite silicon tandem cells
    In order to transfer tandem solar cells from laboratory scale to production, HZB is cooperating with the solar module manufacturer Meyer Burger, which has great expertise in heterojunction technology (HJT) for silicon modules. Within the framework of this cooperation, mass production-ready silicon bottom cells based on heterojunction technology are to be combined with a top cell based on perovskite technology.