X-Ray microscopy: HZB-TXM is back in operation

Comparison of the same specimen at the old Beamline (left) and the new HZB-XM-Beamline (right).

Comparison of the same specimen at the old Beamline (left) and the new HZB-XM-Beamline (right). © HZB

The X-ray microscope (HZB-TXM) is back in operation. The TXM offers significantly  better quality images compared to the former X-ray microscopy station.

It is located at the brand-new U41-L06-PGM1-XM Beamline, which was designed to extend the available photon energy range to the tender X-ray regime (2 keV -2,5 keV). This will allow accessing the silicon, phosphor and sulphur K-edges to study crucial processes in cell membranes and catalysts.

Pictures of identical test objects demonstrate the improved performance of the new TXM. The X-ray microscopy is much in demand by users worldwide and the new TXM is already overbooked for the beamtime allocation period 2017-II. First user experiments have been already conducted.

More information

Peter Guttmann

  • Copy link

You might also be interested in

  • BESSY II: Magnetic ‘microflowers’ enhance local magnetic fields
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance local magnetic fields
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • Innovative battery electrode made from tin foam
    Science Highlight
    24.02.2025
    Innovative battery electrode made from tin foam
    Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.
  • BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    Science Highlight
    20.02.2025
    BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    In a small manganese oxide cluster, teams from HZB and HU Berlin have discovered a particularly exciting compound: two high spin manganese centres in two very different oxidation states and. This complex is the simplest model of a catalyst that occurs as a slightly larger cluster in natural photosynthesis, where it enables the formation of molecular oxygen. The discovery is considered an important step towards a complete understanding of photosynthesis.