X-Ray microscopy: HZB-TXM is back in operation

Comparison of the same specimen at the old Beamline (left) and the new HZB-XM-Beamline (right).

Comparison of the same specimen at the old Beamline (left) and the new HZB-XM-Beamline (right). © HZB

The X-ray microscope (HZB-TXM) is back in operation. The TXM offers significantly  better quality images compared to the former X-ray microscopy station.

It is located at the brand-new U41-L06-PGM1-XM Beamline, which was designed to extend the available photon energy range to the tender X-ray regime (2 keV -2,5 keV). This will allow accessing the silicon, phosphor and sulphur K-edges to study crucial processes in cell membranes and catalysts.

Pictures of identical test objects demonstrate the improved performance of the new TXM. The X-ray microscopy is much in demand by users worldwide and the new TXM is already overbooked for the beamtime allocation period 2017-II. First user experiments have been already conducted.

More information

Peter Guttmann

You might also be interested in

  • New monochromator optics for tender X-rays
    Science Highlight
    30.11.2022
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.
  • BESSY II: Influence of protons on water molecules
    Science Highlight
    10.11.2022
    BESSY II: Influence of protons on water molecules
    How hydrogen ions or protons interact with their aqueous environment has great practical relevance, whether in fuel cell technology or in the life sciences. Now, a large international consortium at the X-ray source BESSY II has investigated this question experimentally in detail and discovered new phenomena. For example, the presence of a proton changes the electronic structure of the three innermost water molecules, but also has an effect via a long-range field on a hydrate shell of five other water molecules.
  • LEAPS research infrastructures to tackle societal crises
    News
    31.10.2022
    LEAPS research infrastructures to tackle societal crises
    Against a backdrop of the energy crisis, scientists and policymakers convened at Paul Scherrer Institute PSI in Switzerland and set out a vision for European accelerator based photon sources to address current and future societal challenges together.