HZB and Freie Universität Berlin establish the joint research group “X-Ray Microscopy” for studying complex cellular processes

In May this year, the joint research group “X-Ray Microscopy” was launched, combining the expertise of teams led by Prof. Dr. Gerd Schneider (Helmholtz-Zentrum Berlin) and Prof. Dr. Helge Ewers (Freie Universität Berlin). While Ewers’ group contributes its experience in the field of optical microscopy and biological research, the HZB workgroup is responsible for X-ray microscopy at the synchrotron source BESSY II. The two methods help researchers to gain a detailed insight into the processes taking place inside cells.

We are very pleased about the new cooperation with Prof. Ewers’ workgroup. It gives our own activities in this field a much stronger connection to the biological research being done at the university,” says Prof. Dr. Gerd Schneider. The core duties of his department at HZB include making advancements to the x-ray microscopes and lenses at the synchrotron source BESSY II. The active exchange between the new cooperation partners will give a new boost to method development, says Schneider. Prof. Dr. Helge Ewers is also excited about the future-oriented cooperation: “X-ray microscopy opens up entirely new possibilities for us in the research of intracellular processes.”

The joint research group is all about the complementary use of optical and X-ray microscopy. Optical microscopy and super-resolution methods are excellent for locating proteins marked with dye molecules in tissue samples. X-ray microscopy, in turn, allows correlative imaging of the distribution of proteins, viruses or nanoparticles over a relatively large section in high-resolution and three-dimensions. The two microscopy methods thus deliver a comprehensive picture of the intracellular structures and processes.

After a successful upgrade, the X-ray microscope TXM at the synchrotron source BESSY II is now available again to users. Aside from biological studies, which can now be conducted with the combined expertise in the joint research group, the X-ray microscope is used above all for exploring various questions of materials and energy research.


You might also be interested in

  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.