New Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide at HZB has started

Dr. Matthew T. Mayer is setting up a Helmholtz Young Investigator Group in the field of energy materials research at HZB. He investigates how carbon dioxide and water can be converted electrochemically into hydrocarbons such as methane and methanol by using renewable energies. Matthew Mayer will receive 300,000 euros per year over a period of five years.

Researchers are faced with the major challenge of developing new solutions for reducing the harmful emissions of carbon dioxide into our environment. One feasible solution is to use clean energy that will convert carbon dioxide and water electrochemically into hydrocarbons such as methane, methanol and ethylene, which are important raw materials for the chemical industry. The biggest hurdle will be improving the energy efficiency, reaction rates and yields from CO2 catalysis.

Matthew T. Mayer is looking to produce novel electrocatalyst materials possessing heterogeneous bimetallic surfaces. Using synchrotron, X-ray and photoelectron spectroscopy, he will be observing these catalytic processes in situ and in operando in order to reveal detailed chemical information about the catalyst–molecule interactions in real time. In this way, Mayer wishes to deliver new insights into guided catalyst design, catalytic mechanisms and principles of cell design. These insights should help to reveal the potential of electrochemical CO2 reduction as a technology for producing valuable hydrocarbons.

Short Biography

Matthew T. Mayer is from the U.S., where he studied chemistry at Boise State University and earned his Ph.D. at Boston College. He currently heads the “Solar Fuels” group at the Laboratory of Photonics and Interfaces. Prior to this, he conducted research for several years at Boston College in the USA. He holds two patents and has published numerous papers.

About the Helmholtz Young Investigators Programme

The research programme fosters highly qualified young researchers who completed their doctorate three to six years ago. The heads of the Young Investigator Groups receive support through a tailored training and mentoring programme. One aim of the programme is to strengthen the networking of Helmholtz centres and universities. More information

(sz)

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.