New Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide at HZB has started

Dr. Matthew T. Mayer is setting up a Helmholtz Young Investigator Group in the field of energy materials research at HZB. He investigates how carbon dioxide and water can be converted electrochemically into hydrocarbons such as methane and methanol by using renewable energies. Matthew Mayer will receive 300,000 euros per year over a period of five years.

Researchers are faced with the major challenge of developing new solutions for reducing the harmful emissions of carbon dioxide into our environment. One feasible solution is to use clean energy that will convert carbon dioxide and water electrochemically into hydrocarbons such as methane, methanol and ethylene, which are important raw materials for the chemical industry. The biggest hurdle will be improving the energy efficiency, reaction rates and yields from CO2 catalysis.

Matthew T. Mayer is looking to produce novel electrocatalyst materials possessing heterogeneous bimetallic surfaces. Using synchrotron, X-ray and photoelectron spectroscopy, he will be observing these catalytic processes in situ and in operando in order to reveal detailed chemical information about the catalyst–molecule interactions in real time. In this way, Mayer wishes to deliver new insights into guided catalyst design, catalytic mechanisms and principles of cell design. These insights should help to reveal the potential of electrochemical CO2 reduction as a technology for producing valuable hydrocarbons.

Short Biography

Matthew T. Mayer is from the U.S., where he studied chemistry at Boise State University and earned his Ph.D. at Boston College. He currently heads the “Solar Fuels” group at the Laboratory of Photonics and Interfaces. Prior to this, he conducted research for several years at Boston College in the USA. He holds two patents and has published numerous papers.

About the Helmholtz Young Investigators Programme

The research programme fosters highly qualified young researchers who completed their doctorate three to six years ago. The heads of the Young Investigator Groups receive support through a tailored training and mentoring programme. One aim of the programme is to strengthen the networking of Helmholtz centres and universities. More information

(sz)

  • Copy link

You might also be interested in

  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.