HZB paper appears in special anniversary edition of the Journal of Physics D: Applied Physics


<p></p>
<p>One example from the paper: <em>operando</em> radiography (A)- (C) shows how sulphur compounds (black features) are deposited on the carbon cathode (gray) of a lithium-sulphur cell during charging and discharging.

One example from the paper: operando radiography (A)- (C) shows how sulphur compounds (black features) are deposited on the carbon cathode (gray) of a lithium-sulphur cell during charging and discharging. © HZB

A paper on X-ray tomography of various types of batteries has been published as a highlight in the exclusive special edition of the Journal of Physics D: Applied Physics. Two groups at the HZB along with a team from Justus Liebig University in Giessen, Germany, contributed to the article.

“We selected this article for inclusion because of its novelty, scientific impact, and broadness of appeal”, writes Executive Editor Tom Miller. The work has now been additionally published in a special issue (Synchrotron- and FEL-based X-ray Methods for Battery Studies) celebrating the journal’s 50-year history. The contribution really demonstrates that X-ray tomography is applicable in many ways and promises a substantial leap in knowledge for research on various types of batteries.

X-ray computer tomography combines X-ray images with three-dimensional methods of representation. It shows what processes within the interior of materials take place. Transport processes and chemical reactions in novel battery systems can be investigated in this way. These processes have been insufficiently understood thus far, which is why it is difficult to achieve specific improvements.

The researchers not only present in the article the utility of X-ray tomography for research on batteries in general, they also present numerous concrete examples illustrating the power of tomographic representation. These examples include zinc-air batteries, sodium-air batteries, and metal-sulphur batteries. They show what processes limit the storage capacity of each battery type and why performance falls with the number of charging cycles.

The article title: “In operando x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes”.

D. Schroder, C. L. Bender, T. Arlt, M. Osenberg, A. Hilger, S. Risse, M. Ballauff, I. Manke and J. Janek

 

Published September 9, 2016

http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404001?fromSearchPage=true

DOI

https://doi.org/10.1088/0022-3727/49/40/404001

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Science Highlight
    31.07.2024
    Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.