HZB paper appears in special anniversary edition of the Journal of Physics D: Applied Physics


<p></p>
<p>One example from the paper: <em>operando</em> radiography (A)- (C) shows how sulphur compounds (black features) are deposited on the carbon cathode (gray) of a lithium-sulphur cell during charging and discharging.

One example from the paper: operando radiography (A)- (C) shows how sulphur compounds (black features) are deposited on the carbon cathode (gray) of a lithium-sulphur cell during charging and discharging. © HZB

A paper on X-ray tomography of various types of batteries has been published as a highlight in the exclusive special edition of the Journal of Physics D: Applied Physics. Two groups at the HZB along with a team from Justus Liebig University in Giessen, Germany, contributed to the article.

“We selected this article for inclusion because of its novelty, scientific impact, and broadness of appeal”, writes Executive Editor Tom Miller. The work has now been additionally published in a special issue (Synchrotron- and FEL-based X-ray Methods for Battery Studies) celebrating the journal’s 50-year history. The contribution really demonstrates that X-ray tomography is applicable in many ways and promises a substantial leap in knowledge for research on various types of batteries.

X-ray computer tomography combines X-ray images with three-dimensional methods of representation. It shows what processes within the interior of materials take place. Transport processes and chemical reactions in novel battery systems can be investigated in this way. These processes have been insufficiently understood thus far, which is why it is difficult to achieve specific improvements.

The researchers not only present in the article the utility of X-ray tomography for research on batteries in general, they also present numerous concrete examples illustrating the power of tomographic representation. These examples include zinc-air batteries, sodium-air batteries, and metal-sulphur batteries. They show what processes limit the storage capacity of each battery type and why performance falls with the number of charging cycles.

The article title: “In operando x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes”.

D. Schroder, C. L. Bender, T. Arlt, M. Osenberg, A. Hilger, S. Risse, M. Ballauff, I. Manke and J. Janek

 

Published September 9, 2016

http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404001?fromSearchPage=true

DOI

https://doi.org/10.1088/0022-3727/49/40/404001

arö

  • Copy link

You might also be interested in

  • More time for discussions
    Interview
    12.05.2025
    More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.