EU project CALIPSOplus has started for free access to European light sources

Light sources collaborating in CALIPSOplus

Light sources collaborating in CALIPSOplus

The EU is providing ten million euros in funding for the project CALIPSOplus, submitted by 19 European light sources. The project consortium, of which Helmholtz-Zentrum Berlin is a member, kicked off on May 2017. CALIPSOplus is aimed at promoting the international exchange of scientists and transnational access to the light sources in Europe. Other priorities are to integrate the relatively less active regions of Europe and to initiate research projects with small and mid-sized companies. 

CALIPSOplus has a runtime of four years and is coordinated by Helmholtz-Zentrum Dresden-Rossendorf. In the scope of CALIPSOplus, HZB manages the work package “Dissemination and Training” and is involved in the research project MOONPICS on the metrology of nanometre lenses.

The project partners will be taking targeted measures to advertise the outstanding analytical methods available here to researchers from Central and Eastern Europe who have so far rarely used the European light sources. This will help to integrate them more strongly into the European scientific landscape. “It is important that we approach the scientists from these countries in person, locally, and promote the opportunities at the light sources. So it’s great that the training programme is one of the priorities of CALIPSOplus,” says Dr. Antje Vollmer, who is coordinating the activities for HZB and who manages user coordination at HZB. Among other things, HZB is planning workshops at universities of the 13 youngest EU countries. Furthermore, there will be a “twinning and exchange programme” that will invite scientists from these countries to collaborate on an equal footing with experienced users of light sources.

The kick-off event for CALIPSOplus was held at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) on 18 and 19 May 2017. More information

Website Wayforlight

Wayforlight.eu is currently being expanded and provides information about the experimental stations at Europe’s light sources and details on how to apply for measuring time.

(sz)

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.