Kickoff for Joint Lab with IFW Dresden

Kickoff with a meeting on 19 June 2017:  Prof. Borisenko, Dr. Rienks, Prof. Büchner (all IFW), the leader of the Young Investigator Group Dr. Fedorov; Dr. Varykhalov and apl. Prof. Rader (both HZB) (from left to right).

Kickoff with a meeting on 19 June 2017: Prof. Borisenko, Dr. Rienks, Prof. Büchner (all IFW), the leader of the Young Investigator Group Dr. Fedorov; Dr. Varykhalov and apl. Prof. Rader (both HZB) (from left to right). © HZB

The Leibniz Institute for Solid State and Materials Research Dresden (IFW) and Helmholtz-Zentrum Berlin (HZB) have created a Joint Lab for “functional quantum materials” and under its umbrella a Young Investigator Group.

The Joint Lab "Functional Quantum Materials" will take advantage of the long-standing expertise of both institutes in energy and materials research and the growth of epitaxial films.  

The new lab is dedicated to explore new materials with promising quantum properties for future applications, for instance in information technologies. The scientists will further develop the common instrumentation at BESSY II with its unique properties - part of them without rival in the world.

With the joint lab, IFW Dresden and HZB intensify their collaboration in research and the promotion of young scientists. Dr. Alexander Fedorov, aged 29, is an internationally renowned young scientist who will move from Cologne to Berlin to head the Young Investigator Group.

O. Rader

  • Copy link

You might also be interested in

  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.