Kickoff for Joint Lab with IFW Dresden

Kickoff with a meeting on 19 June 2017:  Prof. Borisenko, Dr. Rienks, Prof. Büchner (all IFW), the leader of the Young Investigator Group Dr. Fedorov; Dr. Varykhalov and apl. Prof. Rader (both HZB) (from left to right).

Kickoff with a meeting on 19 June 2017: Prof. Borisenko, Dr. Rienks, Prof. Büchner (all IFW), the leader of the Young Investigator Group Dr. Fedorov; Dr. Varykhalov and apl. Prof. Rader (both HZB) (from left to right). © HZB

The Leibniz Institute for Solid State and Materials Research Dresden (IFW) and Helmholtz-Zentrum Berlin (HZB) have created a Joint Lab for “functional quantum materials” and under its umbrella a Young Investigator Group.

The Joint Lab "Functional Quantum Materials" will take advantage of the long-standing expertise of both institutes in energy and materials research and the growth of epitaxial films.  

The new lab is dedicated to explore new materials with promising quantum properties for future applications, for instance in information technologies. The scientists will further develop the common instrumentation at BESSY II with its unique properties - part of them without rival in the world.

With the joint lab, IFW Dresden and HZB intensify their collaboration in research and the promotion of young scientists. Dr. Alexander Fedorov, aged 29, is an internationally renowned young scientist who will move from Cologne to Berlin to head the Young Investigator Group.

O. Rader


You might also be interested in

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.
  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups.