Writing with the electron beam: now in silver

<p class="msocomoff" align="left"><!-- [if !supportAnnotations]--><!--[endif]--></p>
<p>Scanning electron micrographs show a 10-micron planar deposition. The constituting silver crystals are about 100 nanometres in size. </p>
<p>

Scanning electron micrographs show a 10-micron planar deposition. The constituting silver crystals are about 100 nanometres in size.

© HZB/ACS Applied Materials &Interfaces 2017

The silver crystal show up as so-called hot-spots of extreme brightness under laser <a>illumination.</a> Spectral analysis (Raman spectroscopy) shows that each nanocrystal is surrounded by a skin of carbon. </p>
<p>

The silver crystal show up as so-called hot-spots of extreme brightness under laser illumination. Spectral analysis (Raman spectroscopy) shows that each nanocrystal is surrounded by a skin of carbon.

© HZB/ACS Applied Materials & Interfaces 2017

For the first time an international team realized direct writing of silver nanostructures using an electron beam applied to a substrate. Silver nanostructures have the potential to concentrate visible light at the nanoscale. Potential applications include sensor design to detect extremely small traces of specific molecules, as well as devices for optical information processing.

When it comes to extremely fine, precise features, a scanning electron microscope (SEM) is unrivaled. A focused electron beam can directly deposit complex features onto a substrate in a single step (Electron-Beam-Induced Deposition, EBID). While this is an established technique for gold, platinum, copper and further metals, direct electron beam writing of silver remained elusive.  Yet, the noble metal silver promises especially interesting potential applications in nano-optics in information technology. For the first time a team from the HZB and the Swiss Federal Laboratories for Materials Science and Technology (EMPA) has successfully realized the local deposition of silver nanocrystals by EBID. The results have now been published in the journal of the American Chemical Society's ACS Applied Materials Interfaces.

Challenging chemistry

The chemistry of typical silver compounds is extremely challenging. They are difficult to evaporate and are highly reactive. During the heating in the injection unit, they tend to chemically react with the reservoir walls. Along their path from the reservoir to the tip of the needle, these compounds freeze again at the slightest drop in temperature and obstruct the tube. “It took us a lot of time and effort to design a new injection unit and find a suitable silver compound”, explains HZB physicist Dr. Katja Höflich, who carried out the experiments as part of a Helmholtz Postdoctoral Fellowship at EMPA. “Finally, we managed it. The compound silver dimethylbutyrate remains stable and dissociates only in the focus of the electron beam.” Höflich and her colleagues used the EBID method to create sharply defined areas of tiny silver nanocrystals for the first time.

 Writing with the electron beam

The principle works as follows: tiny amounts of a precursor substance – typically a metal-organic compound – are injected into the vacuum chamber of the SEM near the surface of the sample using a needle. Where the electron beam hits the sample surface, the precursor molecules dissociate and their non-volatile constituents are deposited in place. The electron beam can move like a pen over the substrate to create the desired features. For many precursor substances this works even in three dimensions.

 Silver is a light concentrator

The fabricated silver nanostructures possess remarkable optical properties: visible light can excite the free electrons in the metal into oscillations referred to as plasmons. Plasmons are accompanied by an extreme lighting. Information about the composition of the surfaces can be obtained from the colour and intensity of this scattered light. This effect can be utilised in Raman spectroscopy to detect the fingerprint of specific molecules that bind to the silver surface – down to the level of a single molecule. Hence, silver nanostructures are good candidates as sensors for explosives or other dangerous compounds.

A vision for the future: components for optical computing

Further applications are conceivable in future information technology: complex silver nanostructures may constitute the basis for purely optical information processing. To realize this, the process has to be refined, such that complex features can be directly written as already possible for other precursor compounds.

 

 

The results have now been published in ACS Applied Materials & Interfaces (2017):  "Direct Electron Beam Writing of Silver-Based Nanostructures". Katja Höflich, Jakub Jurczyk,Yucheng Zhang, Marcos V. Puydinger dos Santos,,Maximilian Götz, Carlos Guerra-Nuñez, James P. Best,Czeslaw Kapusta, and Ivo Utke.

DOI: 10.1021/acsami.7b04353

arö

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.
  • New software based on Artificial Intelligence helps to interpret complex data
    Science Highlight
    20.12.2022
    New software based on Artificial Intelligence helps to interpret complex data
    Experimental data is often not only highly dimensional, but also noisy and full of artefacts. This makes it difficult to interpret the data. Now a team at HZB has designed software that uses self-learning neural networks to compress the data in a smart way and reconstruct a low-noise version in the next step. This enables to recognise correlations that would otherwise not be discernible. The software has now been successfully used in photon diagnostics at the FLASH free electron laser at DESY. But it is suitable for very different applications in science.