Record- efficiency solar cells realised by the HyPerCells Graduate School

Lab tour of the perovskite synthesis facility at the HZB Institute for Silicon Photovoltaics, on the occasion of the HyPerCells Research Colloquium in May 2017.

Lab tour of the perovskite synthesis facility at the HZB Institute for Silicon Photovoltaics, on the occasion of the HyPerCells Research Colloquium in May 2017. © HZB

The active perovskite layer was only 350 nm thick. It is embedded in organic layers made of C60 fullerene and PTAA polymer.

The active perovskite layer was only 350 nm thick. It is embedded in organic layers made of C60 fullerene and PTAA polymer. © HZB/Uni Potsdam

Current density/voltage curve of a perovskite solar cell with an efficiency of 21.4 %. Data: Martin Stolterfoht and Christian Wolff, University of Potsdam.

Current density/voltage curve of a perovskite solar cell with an efficiency of 21.4 %. Data: Martin Stolterfoht and Christian Wolff, University of Potsdam.

The University of Potsdam and the Helmholtz-Zentrum Berlin founded the HyPerCells Graduate School just two years ago with focus on metal halide perovskites for solar applications. Now, groups involved in the graduate school have demonstrated perovskite solar cells with record-efficiencies of over 20 percent. This confirms the graduate school is at the forefront of this research in Germany and internationally highly competitive.

Metal halide perovskites are regarded as one of the most promising semiconductor materials for novel thin-film solar cells. High absorption coefficients and an optical band gap that can be chosen from a broad range make this class of materials unique. The combination in tandem solar cells of a perovskite cell with conventional semiconductor materials such as silicon enables a high-efficiency route that is especially attractive.

To concentrate research efforts in this fascinating field, the HyPerCells Graduate School was founded and jointly organised by the University of Potsdam and the Helmholtz-Zentrum Berlin two years ago. Currently, 15 doctoral students in HyPerCells from the fields of chemistry, physics, electrical engineering, and crystallography are conducting research to deepen our understanding and develop advanced materials and solar-cell designs.

Just recently, three Young Investigator Groups (YIGs) based at HZB have joined the graduate school. These close collaborations enable the students at the graduate school to understand in detail the physical and chemical processes of this rapidly developing class of materials that are essential for improving solar applications. The three important research topics of these YIGs headed by Steve Albrecht, Eva Unger, and Antonio Abate are the development of new designs for tandem solar-cell architectures, the fabrication of large-scale cells using printing technologies, and the analysis of degradation mechanisms to achieve long term stability.

And this link-up is working. In the last few months, perovskite solar cells with record efficiencies of over 20 per cent have been realised. This is the highest value for so called "inverted" perovskite solar cells with undoped contact layers. It confirms that the graduate school is at the forefront of metal halide perovskite research in Germany and also internationally highly competitive. Several important discoveries about this new photovoltaic material that have emerged from the graduate school research have been recently published in highly ranked journals such as Advanced Materials, Energy & Environmental Science, ACS Applied Materials and Interfaces, and Advanced Optical Materials. Students at the graduate school are also frequently present at national and international conferences.

For further information: www.perovskites.de/

red.

  • Copy link

You might also be interested in

  • Nanoislands on silicon with switchable topological textures
    Science Highlight
    20.01.2025
    Nanoislands on silicon with switchable topological textures
    Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.
  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.