Durchbruch bei EMIL: Erstmalig Undulator-Strahlung am CAT-Experiment

Das Strahlrohr von BESSY II gelangt &uuml;ber ein kleines "Fenster" (unten links) in das Energy Materials in-situ Lab (EMIL@BESSY II), in dem nun die erste Undulator-Strahlung gemessen wurde.</p>
<p>Foto: HZB/David Ausserhofer

Das Strahlrohr von BESSY II gelangt über ein kleines "Fenster" (unten links) in das Energy Materials in-situ Lab (EMIL@BESSY II), in dem nun die erste Undulator-Strahlung gemessen wurde.

Foto: HZB/David Ausserhofer

<!-- [if !supportAnnotations]--><!--[endif]-->Schematischer Aufbau der EMIL-Strahlrohre sowie die Flusskurven und Parameter der beiden Undulator-Lichtquellen UE48 und U17.<a id="_anchor_1" name="_msoanchor_1" href="#_msocom_1" class="msocomanchor"></a></p>
<div></div>

Schematischer Aufbau der EMIL-Strahlrohre sowie die Flusskurven und Parameter der beiden Undulator-Lichtquellen UE48 und U17.

Als das EMIL-Labor (Energy-Materials In-Situ Laboratory Berlin) vor einem Jahr im Beisein von Bundesforschungsministerin, Johanna Wanka, feierlich eingeweiht wurde, war dies ein großer Meilenstein für die Energiematerial-Forschung am HZB. Seitdem wird darauf hingearbeitet, das Röntgenlicht aus BESSY II zu den EMIL-Apparaturen durchzuleiten. Bis das BESSY-Licht zur Verfügung steht, arbeiten die Wissenschaftlerinnen und Wissenschaftler mit Röntgenlicht aus einer konventionellen Laborquelle. Nun ist es den Strahlrohrverantwortlichen gelungen, die aus dem Undulator UE48 kommende Strahlung erstmalig von der BESSY II-Experimentierhalle bis in das EMIL-Labor zum CAT-Experiment zu fädeln. Dort wurde es mit einer Fokus-Messkammer quantitativ vermessen.

„Alle für den späteren Messbetrieb wichtigen Parameter wie Strahldurchmesser (108 x 56 µm2), Photonenfluss (ca. 1012 s-1) sowie Auflösungsvermögen (50 meV bei 400 eV) entsprechen den Erwartungen und den berechneten Werten“, sagt der verantwortliche Projektleiter, Dr. Franz Schäfers.

Damit verspricht das Strahlrohr eines der leistungsfähigsten in diesem Energiebereich zu sein. Insgesamt gibt es zwei Strahlrohre, die das Röntgenlicht aus BESSY II zum EMIL-Labor bringen. Sie sind das Bindeglied zwischen Lichtquelle und Experiment und haben eine Vielzahl von Anforderungen zu erfüllen. Die beiden zu EMIL@BESSY II führenden Strahlrohre gehören laut Schäfers „zu den komplexesten optischen Aufbauten, die bisher an einem Speicherring für Synchrotronstrahlung realisiert wurden“. Die Komplexität hat mehrere Gründe:

Die EMIL-Strahlrohre

Die weiche und harte Röntgenstrahlung wird in zwei verschiedenen Undulatoren – so heißen die magnetischen Aufbauten im Speicherring – erzeugt. Sie wird in zwei getrennten Strahlrohren transportiert, monochromatisiert und fokussiert und dann wieder in einem Punkt zusammengeführt. Dies geschieht an den drei Fokuspunkten (SISSY-I, SISSY-II und CAT). Zusätzlich gibt es zwei weitere Experimente, die ausschließlich die weiche (PEEM) bzw. die harte Strahlung (PINK) verarbeiten. Diese Vielfalt in der Lichtführung erfordert eine Vielzahl optischer Elemente ((Umlenk-)Spiegel, Beugungsgitter, Kristalle). Deren optische Spezifikation wurde vorab im hauseigenen Optiklabor überprüft und danach in Ultrahochvakuum (UHV-) Kammern hochpräzise justierbar eingemessen.

Da die Röntgenstrahlung nur kleine Ablenkwinkel erlaubt, musste das gesamte Strahlrohrsystem in einem schmalen, langen Korridor aufgebaut werden. Auf einer Grundfläche von einem Meter Breite und 60 Metern Länge befinden sich daher bis zu 6 Strahlrohre mit 17 UHV-Kammern und 26 optischen Elementen, und alles ruht auf drei unterschiedlichen Fundamenten. Das gesamte UHV-Strahlrohrsystem hat eine Länge von zirka 180 Metern.

Die nächsten Schritte

Der jetzt erreichte Meilenstein weckt die Vorfreude beim gesamten EMIL-Team auf die endgültige Fertigstellung des Laborkomplexes. Bis es soweit ist, bleibt jedoch noch viel zu tun, sagt Franz Schäfers: „Als nächstes soll das aus dem Undulator UE48 ankommende BESSY-Licht über einen weiteren Umlenkspiegel auf den SISSY-I Fokus gelenkt werden. Der Undulator U17 für die harte Röntgenstrahlung wird voraussichtlich während der kommenden Abschaltphase des Speicherrings Mitte Dezember 2017 eingebaut werden.“

Dieses Strahlrohr ist jedoch noch komplexer als das oben beschriebene. Es verfügt nicht nur über einen Plangitter-Monochromator für die erste Harmonische zwischen 700 eV und 2000 eV, sondern zusätzlich über einen Doppelkristallmonochromator (DCM) für die Strahlung der höheren Harmonischen oberhalb von 2000 eV. Dabei entsteht auf dem ersten Monochromator-Kristall reichlich Wärme, sodass mit flüssigem Stickstoff gekühlt werden muss. Diese Kühl-Technologie kam bei BESSY II bisher noch nicht zur Anwendung.

Beide Monochromatoren im U17-Hartröntgenzweig werden alternativ in Betrieb sein, während die beiden Undulatoren gleichzeitig betrieben werden und somit zwei Experimente zeitgleich bedienen können.

Im EMIL-Labor widmen sich HZB-Forschende zusammen mit ihren Kooperationspartnern der Synthese sowie der in-situ- und in-operando-Röntgenanalyse von Materialien, die für die Energie-Umwandlung und Energie-Speicherung relevant sind. Dies erfolgt vor allem im SISSY-Labor des HZB. Im CAT-Labor der Max-Planck-Gesellschaft (MPG) werden katalytische Prozesse für die Energie-Konversion unter realitätsnahen Bedingungen (ambient pressure) untersucht.

Sehen Sie hier im zweiminütigen Video, welche Möglichkeiten EMIL bietet.

red

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.