Einladung zum HySPRINT – Industrietag „New Frontiers in PV Research: Emerging Perovskite Semiconductors"

Am HZB arbeiten Forschungsgruppen daran, die Materialklasse der metallorganischen Perowskite für Solarzellen nutzbar zu machen. Das Bild zeigt eine Perowskit-Silizium-Tandemsolarzelle. Bild. HZB

Am HZB arbeiten Forschungsgruppen daran, die Materialklasse der metallorganischen Perowskite für Solarzellen nutzbar zu machen. Das Bild zeigt eine Perowskit-Silizium-Tandemsolarzelle. Bild. HZB © HZB

Am 13. Oktober veranstaltet das Helmholtz-Zentrum Berlin erstmals einen Industrietag zum Thema Perowskit-Solarzellen. Nach einem Überblick über den aktuellen Stand von Forschung und Entwicklung sowie das Zukunftspotenzial von Perowskit-Solarzellen gibt es für die Teilnehmer aus der Industrie die Möglichkeit, das Interesse ihres Unternehmens an dem Thema in einer Kurzpräsentation darzustellen. Intensive Diskussionen im Rahmen des Industrietages bilden den Ausgangspunkt für zukünftige Kooperationen.

„Dieser Termin bietet den Gästen aus der Industrie die Möglichkeit, mit unseren Expertinnen und Experten die Fragestellungen zu identifizieren, die für die industrielle Entwicklung von Perowskit-Solarzellen besonders wichtig sind“, erklärt Dr. Stefan Gall, Projektleiter des Helmholtz Innovation Labs HySPRINT am HZB. „Die identifizierten Fragestellungen werden wir dann in enger Kooperation mit industriellen Partnern zeitnah bearbeiten“.

In der Photovoltaik gelten die metallorganischen Perowskit-Halbleiter als besonders spannende neue Materialklasse. Seit 2009 konnte der Wirkungsgrad von Perowskit-Solarzellen von knapp 4 auf über 20 Prozent erhöht werden! Eine rasante Steigerung, die so bei bislang keiner anderen Materialklasse in der Photovoltaik gelungen ist. Hervorzuheben ist hierbei auch, dass Perowskit-Absorberschichten im Prinzip großflächig und kostengünstig hergestellt werden können. Allerdings besteht auch noch erheblicher Entwicklungsbedarf, um Perowskit-Solarzellen erfolgreich in den Photovoltaik-Markt einzubringen.

Das Helmholtz-Zentrum Berlin hat daher Forschung und Entwicklung an Perowskit-Halbleitern deutlich ausgebaut und das Helmholtz Innovation Lab HySPRINT (www.HySPRINT.de) eingerichtet, um den Technologietransfer voranzutreiben. Der Name HySPRINT steht für „Hybrid Silicon Perovskite Research, Integration & Novel Technologies“. HySPRINT ist ein Corelab des HZBs und arbeitet eng mit dem Kompetenz-Zentrum Photovoltaik Berlin (PVcomB) am HZB zusammen. Im Rahmen von HySPRINT wird momentan nicht nur an Perowskit-Silizium-Tandemsolarzellen, sondern u.a. auch an der Flüssigphasenkristallisation von Silizium und der Nanoimprint-Lithographie gearbeitet.

„Wir haben das Helmholtz Innovation Lab HySPRINT im Januar 2017 gegründet, um bereits in einem frühen technologischen Entwicklungsstadium den Technologietransfer voranzutreiben. Deshalb laden wir nun auch zu diesem ersten Industrietag ein“, sagt Prof. Dr. Bernd Rech, Sprecher des Lenkungsaussschusses von HySPRINT und wissenschaftlicher Geschäftsführer des HZB.

HySPRINT – IndustrietagNEW FRONTIERS IN PV RESEARCH: EMERGING PEROVSKITE SEMICONDUCTORS“

Wann: 13.10.2017 ab 10:00

Wo: HZB, Berlin-Adlershof

Programm

Bitte melden Sie sich online hier an.

Rückfragen an: hysprint@helmholtz-berlin.de

Hinweis: Am Vortag des Industrietags findet ein Workshop zu „Advanced Characterization Possibilities in Corelab Facilities of HZB for Metal-Halide Perovskites“ statt. Sie können sich hier anmelden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.