Bewilligt! EU-Projekt INFINITE-CELL

Im November 2017 startet ein großes EU-Forschungsprojekt zu Tandemsolarzellen, an dem auch das HZB beteiligt ist. Ziel ist es, Halbleiter-Dünnschichten aus Silizium und Kesteriten zu besonders preiswerten Tandemzellen mit Wirkungsgraden von über 20 Prozent zu kombinieren. An dem Projekt arbeiten mehrere große Forschungseinrichtungen aus Europa, Marokko, Südafrika und Weißrußland und zwei Industriepartner.

„Wir haben nicht nur eingehende Erfahrungen mit Kesteriten, sondern verfügen auch über ein großes Spektrum an Analyse-Methoden, um Absorbermaterialien sehr gründlich zu charakterisieren“, erklärt Prof. Dr. Susan Schorr. Das Gesamt-Projekt wird von der FUNDACIO INSTITUT DE RECERCA DE L'ENERGIA DE CATALUNYA (IREC), Spanien, einem langjährigen Kooperationspartner des HZB, koordiniert. Mit einem Kick-off-Workshop in Brüssel im November 2017 startet das Projekt.

Konkrete Ziele

Dabei gibt es konkrete Ziele: So sollen Kesterit-Solarzellen Wirkungsgrade von mehr als 14 Prozent erreichen (aktuell knapp 12 Prozent), Dünnschichtsiliziumzellen aus recyceltem Material noch Wirkungsgrade von über 16 Prozent. Dabei nutzt Silizium einen anderen Energiebereich des Lichts, um Strom zu erzeugen, als Kesterit. Kombiniert man beide Materialien zu einer Tandemsolarzelle, indem man sie aufeinanderstapelt oder sogar aufeinander aufwachsen lässt, dann lässt sich ein deutlich größerer Anteil der Sonnenenergie in elektrische Energie umwandeln. Solche besonders effizienten, dabei aber auch preiswerten Solarmodule könnten in Fassaden, Dachflächen oder Fahrzeugdächern eingesetzt werden und dezentral Strom erzeugen.

Vorteile von Kesteriten

“Kesterite sind eine sehr interessante Materialklasse” betont Susan Schorr. Denn auch wenn andere Absorbermaterialien wie CIGS oder die metallorganischen Perowskit-Halbleiter heute deutlich höhere Wirkungsgrade erreichen, können Kesterite mit zwei großen Vorteilen trumpfen: Sie bestehen aus reichlich vorhandenen Elementen und sind ungiftig.

Fördermittel für den Austausch

Die Laufzeit des Projektes beträgt vier Jahre. Es handelt sich um ein Research and Innovation Staff Exchange (RISE) Projekt, das zu den EU-geförderten „Marie Skłodowska-Curie Actions“ gehört. Damit können Wissenschaftlerinnen und Wissenschaftler in den nächsten Jahren zu Partnereinrichtungen reisen, um sich über ihre Ergebnisse auszutauschen. Diese gemeinsame Forschung ist in einem detaillierten „Secondment“-Plan festgehalten.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.