Approved! The EU INFINITE-CELL project

A large EU-sponsored research project on tandem solar cells in which HZB is participating begins in November 2017. The goal is to combine thin-film semiconductors made of silicon and kesterites into especially cost-effective tandem cells having efficiencies of over 20 per cent. Several large research institutions from Europe, Morocco, the Republic of South Africa, and Belarus will be working on the project, as well as two partners from industry.

“We not only have detailed experience with kesterite thin films, but also a wide spectrum of analytical methods at our disposal to characterise absorber materials very thoroughly”, explains Prof. Susan Schorr. The FUNDACIO INSTITUT DE RECERCA DE L’ENERGIA DE CATALUNYA (IREC), Spain – a long-term collaborating partner of the HZB, is coordinating the entire project. The project begins with a kick-off workshop in Brussels in November 2017.

Ambitious Goals

Goals of the project are quite concrete: the kesterite solar cells should reach an efficiency level of more than 14 per cent (currently they are just below 12%), while thin-film silicon cells made from recycled material should reach an efficiency level of over 16 per cent. Reaching more than 20 % is feasible because silicon uses a different energy region of light to generate electricity than kesterite does. When you combine both materials into one tandem solar cell, where you stack them upon one another or even grow one on the other, it enables a considerably larger proportion of solar energy to be converted into electrical energy. These kinds of especially efficient and also cost-effective solar modules might be employed in cladding, and on roof surfaces – for both buildings and vehicles – to generate power locally.

Why Kesterites?

“Kesterites are a very interesting class of materials”, emphasises Schorr. For even though other absorber materials like copper-indium-gallium-sulphides (CIGS) or metal-organic perovskite semiconductors are able to attain considerably higher efficiency levels today, kesterites trump them with two big advantages: kesterites consist of very abundant elements, and they are non-toxic.

Exchange between partner institutions

The project INFINITECELL, which is a  Research and Innovation Staff Exchange (RISE) type funding, has a duration of four years. It is part of the Marie Skłodowska-Curie Actions Programme funded by the EU within Horizon 2020. This enables scientists over the coming years to travel to partner institutions in order to exchange experience, skills, and insights. The joint research is set out in a detailed Secondment Plan.

 

arö


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).
  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.