Approved! The EU INFINITE-CELL project

A large EU-sponsored research project on tandem solar cells in which HZB is participating begins in November 2017. The goal is to combine thin-film semiconductors made of silicon and kesterites into especially cost-effective tandem cells having efficiencies of over 20 per cent. Several large research institutions from Europe, Morocco, the Republic of South Africa, and Belarus will be working on the project, as well as two partners from industry.

“We not only have detailed experience with kesterite thin films, but also a wide spectrum of analytical methods at our disposal to characterise absorber materials very thoroughly”, explains Prof. Susan Schorr. The FUNDACIO INSTITUT DE RECERCA DE L’ENERGIA DE CATALUNYA (IREC), Spain – a long-term collaborating partner of the HZB, is coordinating the entire project. The project begins with a kick-off workshop in Brussels in November 2017.

Ambitious Goals

Goals of the project are quite concrete: the kesterite solar cells should reach an efficiency level of more than 14 per cent (currently they are just below 12%), while thin-film silicon cells made from recycled material should reach an efficiency level of over 16 per cent. Reaching more than 20 % is feasible because silicon uses a different energy region of light to generate electricity than kesterite does. When you combine both materials into one tandem solar cell, where you stack them upon one another or even grow one on the other, it enables a considerably larger proportion of solar energy to be converted into electrical energy. These kinds of especially efficient and also cost-effective solar modules might be employed in cladding, and on roof surfaces – for both buildings and vehicles – to generate power locally.

Why Kesterites?

“Kesterites are a very interesting class of materials”, emphasises Schorr. For even though other absorber materials like copper-indium-gallium-sulphides (CIGS) or metal-organic perovskite semiconductors are able to attain considerably higher efficiency levels today, kesterites trump them with two big advantages: kesterites consist of very abundant elements, and they are non-toxic.

Exchange between partner institutions

The project INFINITECELL, which is a  Research and Innovation Staff Exchange (RISE) type funding, has a duration of four years. It is part of the Marie Skłodowska-Curie Actions Programme funded by the EU within Horizon 2020. This enables scientists over the coming years to travel to partner institutions in order to exchange experience, skills, and insights. The joint research is set out in a detailed Secondment Plan.

 

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HySPRINT Photovoltaics Lab inaugurated
    News
    20.06.2024
    HySPRINT Photovoltaics Lab inaugurated
    After around four years of renovation, photovoltaics research groups moved into their offices in Kekuléstraße on 20 June 2024. With the reopening, the building has also been given a new name that makes the research more visible: it is now called HySPRINT Photovoltaics Lab.