Future IT: Antiferromagnetic dysprosium reveals magnetic switching with less energy

A short laser pulse pertubates magnetic order in dysprosium. This happens much faster if the sample had a antiferromagnetic order (left) compared to ferromagnetic order (right).

A short laser pulse pertubates magnetic order in dysprosium. This happens much faster if the sample had a antiferromagnetic order (left) compared to ferromagnetic order (right). © HZB

The cover of the 10. november issue of PRL highlights the work done by Nele Thielemann-K&uuml;hn and colleagues: The study was selected as well for a Focus story in Physics and an Editors&rsquo; Suggestion.<br />

The cover of the 10. november issue of PRL highlights the work done by Nele Thielemann-Kühn and colleagues: The study was selected as well for a Focus story in Physics and an Editors’ Suggestion.

HZB scientists have identified a mechanism with which it may be possible to develop a form of magnetic storage that is faster and more energy-efficient. They compared how different forms of magnetic ordering in the rare-earth metal named dysprosium react to a short laser pulse. They discovered that the magnetic orientation can be altered much faster and with considerably less energy if the magnetic moments of the individual atoms do not all point in the same direction (ferromagnetism), but instead point are rotated against each other (anti-ferromagnetism). The study was published in Physical Review letters on 6. November 2017 and on the cover of the print edition.

Dysprosium is not only the atomic element with the strongest magnetic moments, but it also possesses another interesting property: its magnetic moments point either all the same direction (ferromagnetism) or are tilted against each other, depending on the temperature. This makes it possible to investigate in the very same sample how differently oriented magnetic moments behave when they are excited by an external energy pulse.

Magnetic-order perturbation examined at BESSY II

Physicist Dr. Nele Thielemann-Kühn and her colleagues have now investigated this problem at BESSY II. The BESSY II X-ray source is one of the few facilities worldwide that enables processes as fast as magnetic-order perturbations to be observed. Her finding: the magnetic orientation in antiferromagnetic dysprosium can be much more easily toggled using a short laser pulse than in ferromagnetic dysprosium.

“This is because the magnetic moments at the atomic level are coupled to angular momenta like that of a gyroscope”, explains Thielemann-Kühn. Tipping a rotating gyroscope requires force because its angular momentum must be transferred to another body. “Albert Einstein and Wander Johannes de Haas showed in a famous experiment back in 1915 that when the magnetisation of a suspended bar of iron changes, the bar begins to rotate because the angular momenta of the atomic-level magnets in the suspended bar are transferred to it as a whole. If the atomic-level magnetic momenta are already pointing in different directions initially, their angular momenta can interact with one another and cancel each other out, just as if you were to combine two gyroscopes rotating in opposite directions”, clarifies Dr. Christian Schüssler-Langeheine, head of the group.

Antiferromagnetic order is perturbed faster

The transfer of angular momentum takes time, though.  Antiferromagnetic order, for which this transfer is not required, should therefore be able to be perturbed faster than ferromagnetic order. The empirical evidence for this conjecture has now been delivered in this study by Thielemann-Kühn and her colleagues. Moreover, the team also discovered that the energy needed in the case of the antiferromagnetic momenta is considerably lower than in the case of ferromagnetic order.

From this observation, the scientists have been able to suggest how materials could be developed with a combination of ferromagnetic and antiferromagnetic aligned spins that are suitable as magnetic storage media and might be switched with considerably lower energy expenditure than material made from conventional magnets.

 

Physical Review Letters (06 November 2017): Ultrafast and energy-efficient quenching of spin order: Antiferromagnetism beats ferromagnetism; Nele Thielemann-Kühn, Daniel Schick, Niko Pontius, Christoph Trabant, Rolf Mitzner, Karsten Holldack, Hartmut Zabel, Alexander Föhlisch, Christian Schüßler-Langeheine

DOI: 10.1103/PhysRevLett.119.197202

 

Highlighted as Focus story in "Physics": Quick Changes in Magnetic Materials

 

 

red./arö

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.