LEAPS – Europas Lichtquellen entwickeln sich gemeinsam weiter für die Spitzenforschung

Für das HZB mit der Lichtquelle BESSY II nahm Prof. Bernd Rech an dem LEAPS-Treffen teil.

Für das HZB mit der Lichtquelle BESSY II nahm Prof. Bernd Rech an dem LEAPS-Treffen teil.

Die Aufnahme zeigt die Direktorinnen und Direktoren der an LEAPS beteiligten Lichtquellen. Bild. Diamond Light Source

Die Aufnahme zeigt die Direktorinnen und Direktoren der an LEAPS beteiligten Lichtquellen. Bild. Diamond Light Source

In Brüssel hat sich ein neuer strategischer Zusammenschluss der europäischen Forschungslichtquellen gegründet. Ziel des LEAPS-Konsortiums (League of European Accelerator-based Photon Sources) ist es, die europäische Kooperation dieser „Supermikroskope“ auf eine neue Ebene zu heben, um mit der geballten wissenschaftlichen Exzellenz globale Herausforderungen zu lösen sowie die europäische Wettbewerbsfähigkeit und Integration zu stärken. Vertreter von 16 Institutionen legten dazu im Beisein des Generaldirektors für Forschung und Innovation der Europäischen Union, Robert-Jan Smits, eine gemeinsame Erklärung vor.

„Licht aus Teilchenbeschleunigern spielt heute für Untersuchungen in nahezu jedem naturwissenschaftlichen Bereich eine entscheidende Rolle – von Physik, Chemie und Biologie über Energie, Medizin und Verkehr bis hin zu kulturgeschichtlichen Studien“, sagt Prof. Helmut Dosch, DESY-Direktor und Vorsitzender des Konsortiums. „Bisher wurden die Lichtquellen in den verschiedenen Ländern im Wesentlichen unabhängig voneinander entwickelt und betrieben. Doch sie haben eine Menge gemeinsam, denn die meisten ihrer wissenschaftlichen Zielsetzungen sind sehr ähnlich.“

„Am Helmholtz-Zentrum Berlin betreiben wir mit BESSY II eine Synchrotronlichtquelle, die auf den weichen Röntgenbereich spezialisiert ist“, erklärt Prof. Bernd Rech, der das HZB kommissarisch leitet. „Damit sind wir bewusst komplementär zu anderen Synchrotronquellen in Deutschland und Europa, die vorwiegend harte Röntgenstrahlung erzeugen.“  

Mit weicher Röntgenstrahlung lassen sich empfindliche Prozesse an Oberflächen und Grenzflächen von Dünnschichtmaterialien untersuchen und chemische Bindungen analysieren. Auch feinste magnetische Strukturen innerhalb von dünnen Schichten können sichtbar gemacht werden. Schwerpunkte der Forschung an BESSY II sind Energiematerialien, von Solarzellen der nächsten Generation über katalytische Systeme bis hin zu magnetischen Materialien für neue, energieeffiziente Informationstechnologien.

„Das HZB engagiert sich mit voller Überzeugung in LEAPS. Indem wir eng zusammenarbeiten, auch bei der Weiterentwicklung von beschleunigerbasierten Lichtquellen, können wir in Europa die besten Bedingungen für die Forschung mit Licht schaffen“, sagt Rech. Auch die Zukunftsprojekte am HZB zur Weiterentwicklung von BESSY II, nämlich BESSY VSR und BERLinPro sind auf die europäische Forschungslandschaft abgestimmt.

Die neue Form der Zusammenarbeit zwischen den beteiligten Einrichtungen soll sicherstellen, dass die großen europäischen Forschungsinfrastrukturen künftig noch effizienter genutzt werden und dass große wissenschaftliche und technologische Herausforderungen gemeinsam angegangen werden.

In LEAPS haben sich 16 Institutionen aus zehn europäischen Ländern zusammengeschlossen, die einer Gemeinschaft von mehr als 24 000 Forscherinnen und Forschern mit einem breit gefächerten Themenspektrum dienen. Davon profitieren nicht nur Grundlagen- und anwendungsorientiere Forschung, sondern auch die industrielle Forschung an beschleunigerbasierten Lichtquellen.

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.
  • 10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Nachricht
    16.07.2025
    10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Die UNITE – Startup Factory Berlin-Brandenburg wird vom Bundesministerium für Wirtschaft und Energie als eines von zehn bundesweiten Leuchtturmprojekten für wissenschaftsbasierte Gründungen ausgezeichnet. UNITE soll als zentrale Transfer-Plattform für technologiegetriebene Ausgründungen aus der Wissenschaft und Industrie in der Hauptstadtregion etabliert werden. Auch das Helmholtz-Zentrum Berlin wird davon profitieren.