LEAPS – Europe’s light sources join together to coordinate cutting-edge research

Prof. Bernd Rech represented the HZB and its lightsource BESSY II.

Prof. Bernd Rech represented the HZB and its lightsource BESSY II.

Directors of European lightsources. Credit. Diamond Light Source

Directors of European lightsources. Credit. Diamond Light Source

A new strategic group comprising the organisations operating European accelerator-based light sources has been founded in Brussels. The goal of the LEAPS consortium (League of European Accelerator-Based Photon Sources) is to elevate European collaboration on these “super microscopes” to a new level for the purpose of helping solve global challenges through concerted scientific excellence, as well as boost European competitiveness and integration. Representatives from 16 institutions issued a common declaration in the presence of the European Union’s Director General for Research and Innovation, Robert-Jan Smits.

“Light from particle accelerators plays a decisive role for studies in nearly every field of the natural sciences today – from physics, chemistry, and biology to energy, medicine, and transportation through to cultural history”, remarks Prof. Helmut Dosch, Director of the Helmholtz DESY centre and Chair of the consortium. “Until now, the light sources situated in the various countries have been largely developed and operated independently from one another. Yet they have an enormous amount in common, because they are extremely similar in their scientific objectives.”

Prof. Bernd Rech, acting head of the Helmholtz-Zentrum in Berlin (HZB) explains: “At HZB we operate BESSY II, a synchrotron light source that specialises in producing soft X-rays for scientific research. We intentionally complement other synchrotron sources in Germany and Europe, the majority of which generate hard X-ray emissions.”

Processes involving delicate chemical bonding and those taking place at surfaces and boundary layers in thin-film materials are often disrupted by higher energies, but can be successfully studied using soft X-rays. Minute magnetic features within thin layers can be delineated as well. The research priorities at BESSY II revolve about energy materials and involve a wide range of potential applications – from next-generation solar cells, to catalytic systems, through to magnetic materials for employment in new energy-efficient information technologies.

“The HZB is completely committed to the LEAPS objectives. By working together, including on developing advanced accelerator-based light sources, we will be able to create here in Europe the most productive research environment possible for using light as a probe”, says Rech. In addition, the future projects coming up at HZB for the advanced development of BESSY II, i.e. BESSY-VSR and bERLinPro, are being coordinated within the European research landscape.

The new form of cooperation between the participating institutions is intended to ensure that the large European research infrastructures are used even more efficiently in the future and that large scientific and technological challenges can be addressed jointly.

16 institutions from 10 European countries have joined together in LEAPS to serve a community of more than 24,000 researchers working on a broad spectrum of research topics. Industrial research conducted at accelerator-based light sources will benefit from LEAPS as well, not just the fields of pure and applied research.

You might also be interested in

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Nanodiamonds can be activated as photocatalysts with sunlight
    Science Highlight
    30.11.2022
    Nanodiamonds can be activated as photocatalysts with sunlight
    Nanodiamond materials have potential as low-cost photocatalysts. But until now, such carbon nanoparticles required high-energy UV light to become active. The DIACAT consortium has therefore produced and analysed variations of nanodiamond materials. The work shows: If the surface of the nanoparticles is occupied by sufficient hydrogen atoms, even the weaker energy of blue sunlight is sufficient for excitation. Future photocatalysts based on nanodiamonds might be able to convert CO2 or N2 into hydrocarbons or ammonia with sunlight.
  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.