LEAPS – Europe’s light sources join together to coordinate cutting-edge research

Prof. Bernd Rech represented the HZB and its lightsource BESSY II.

Prof. Bernd Rech represented the HZB and its lightsource BESSY II.

Directors of European lightsources. Credit. Diamond Light Source

Directors of European lightsources. Credit. Diamond Light Source

A new strategic group comprising the organisations operating European accelerator-based light sources has been founded in Brussels. The goal of the LEAPS consortium (League of European Accelerator-Based Photon Sources) is to elevate European collaboration on these “super microscopes” to a new level for the purpose of helping solve global challenges through concerted scientific excellence, as well as boost European competitiveness and integration. Representatives from 16 institutions issued a common declaration in the presence of the European Union’s Director General for Research and Innovation, Robert-Jan Smits.

“Light from particle accelerators plays a decisive role for studies in nearly every field of the natural sciences today – from physics, chemistry, and biology to energy, medicine, and transportation through to cultural history”, remarks Prof. Helmut Dosch, Director of the Helmholtz DESY centre and Chair of the consortium. “Until now, the light sources situated in the various countries have been largely developed and operated independently from one another. Yet they have an enormous amount in common, because they are extremely similar in their scientific objectives.”

Prof. Bernd Rech, acting head of the Helmholtz-Zentrum in Berlin (HZB) explains: “At HZB we operate BESSY II, a synchrotron light source that specialises in producing soft X-rays for scientific research. We intentionally complement other synchrotron sources in Germany and Europe, the majority of which generate hard X-ray emissions.”

Processes involving delicate chemical bonding and those taking place at surfaces and boundary layers in thin-film materials are often disrupted by higher energies, but can be successfully studied using soft X-rays. Minute magnetic features within thin layers can be delineated as well. The research priorities at BESSY II revolve about energy materials and involve a wide range of potential applications – from next-generation solar cells, to catalytic systems, through to magnetic materials for employment in new energy-efficient information technologies.

“The HZB is completely committed to the LEAPS objectives. By working together, including on developing advanced accelerator-based light sources, we will be able to create here in Europe the most productive research environment possible for using light as a probe”, says Rech. In addition, the future projects coming up at HZB for the advanced development of BESSY II, i.e. BESSY-VSR and bERLinPro, are being coordinated within the European research landscape.

The new form of cooperation between the participating institutions is intended to ensure that the large European research infrastructures are used even more efficiently in the future and that large scientific and technological challenges can be addressed jointly.

16 institutions from 10 European countries have joined together in LEAPS to serve a community of more than 24,000 researchers working on a broad spectrum of research topics. Industrial research conducted at accelerator-based light sources will benefit from LEAPS as well, not just the fields of pure and applied research.

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).