Nutzerforschung am BER II: Neue Erkenntnisse zur Hochtemperatur-Supraleitung

Schematische Darstellung der &ldquo;Streifen-Ordnung&rdquo;: Die blauen Streifen sind die geladenen, supraleitenden Bereiche. Abbildung mit &Auml;nderungen &uuml;bernommen von Physical Review Letters.</p> <p>&nbsp;

Schematische Darstellung der “Streifen-Ordnung”: Die blauen Streifen sind die geladenen, supraleitenden Bereiche. Abbildung mit Änderungen übernommen von Physical Review Letters.

 

Die farbigen 2D-Plots zeigen die gemessenen Daten der magnetische Ordnung (links) und der magnetischen Anregungen (rechts). Nur mithilfe hochaufgel&ouml;ster Messungen l&auml;sst sich zeigen, dass beide Datens&auml;tze nicht genau zueinander passen, und die Signale daher nicht aus demselben Bereich der Probe stammen. Abbildung mit &Auml;nderungen &uuml;bernommen von Physical Review Letters.

Die farbigen 2D-Plots zeigen die gemessenen Daten der magnetische Ordnung (links) und der magnetischen Anregungen (rechts). Nur mithilfe hochaufgelöster Messungen lässt sich zeigen, dass beide Datensätze nicht genau zueinander passen, und die Signale daher nicht aus demselben Bereich der Probe stammen. Abbildung mit Änderungen übernommen von Physical Review Letters.

Auch nach 30 Jahren Forschung bleiben viele Eigenschaften von Hochtemperatur-Supraleitern rätselhaft. So bildet sich in einigen Kuprat-Supraleitern eine magnetische “Streifen-Ordnung” aus. Ein dänisches Forscherteam hat diese Streifen mit Hilfe von Neutronen an den hochauflösenden Spektrometern FLEXX (HZB) und ThALES (ILL, Grenoble) genauer untersucht. Ihre Ergebnisse, die jetzt in Physical Review Letters veröffentlicht wurden, stellen das gängige Verständnis dieser „Streifen-Ordnung“ in Frage. Sie tragen dazu bei, das Phänomen der  Hochtemperatur-Supraleitung weiter zu entschlüsseln.

Bereits seit 30 Jahren ist bekannt, dass Kuprat-Supraleiter bei ungewöhnlich hohen Temperaturen supraleitend werden – vielfach oberhalb des Siedepunkts von Flüssigstickstoff (-196° C). Das macht sie für Anwendungen besonders interessant. Die Forschung hat gezeigt, dass bei den Kupraten ein anderer Mechanismus zur Entstehung des supraleitenden Zustands führt, als dies in konventionellen Supraleitern der Fall ist. Allerdings ist dieser Mechanismus trotz intensiver Forschung immer noch nicht richtig verstanden. Forscher hoffen, dass ein tieferes Verständnis der Hochtemperatur-Supraleiter es ermöglichen könnte, Materialien zu entwickeln, die auch bei Raumtemperatur supraleitend sind.

In den Kupraten ist Supraleitung sehr eng mit den magnetischen Eigenschaften  verknüpft – ganz im Gegensatz zu konventionellen Supraleitern, bei denen die Supraleitung durch Magnetismus zerstört wird. Für einige Kupratverbindungen wird ein ungewöhnlicher Zustand beobachtet: Streifen mit magnetischer Ordnung wechseln sich ab mit elektrisch geladenen, supraleitenden Streifen (siehe Bild). Auch magnetische Anregungen wurden gefunden, die anscheinend zu den Streifen mit magnetischer Ordnung gehören.

Ein Team aus dem Niels Bohr Institut an der Universität Kopenhagen, Dänemark, hat sich diese magnetischen Streifen mittels Neutronenstreuung genauer angesehen. Die Spektrometer FLEXX (HZB) und ThALES (ILL, Grenoble) bieten dafür eine besonders hohe Auflösung. Aus ihren Daten konnten die Wissenschaftler folgern, dass die magnetisch geordneten Streifen und die magnetischen Anregungen nicht zueinander passen, obwohl die Anregungen auch streifenförmig sind. Beide Phänomene entstehen offenbar in unterschiedlichen Bereichen der Probe. Der Vergleich mit anderen Experimenten suggeriert, dass eine Phasenseparation in eine magnetische und eine supraleitende Phase erfolgt, und dass die magnetischen Anregungen zur supraleitenden Phase gehören.

Diese Annahme wirft ein ganz neues Licht auf viele bereits veröffentlichte Experimente zu Kuprat-Supraleitern, die von einem gemeinsamen Ursprung der magnetischen Ordnung und der magnetischen Anregungen ausgehen. Die Ergebnisse wurden jetzt in Physical Review Letters veröffentlicht.

 

Zur Publikation in Phys. Rev. Letters (2018): "Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors", H. Jacobsen, S. L. Holm, M.-E. Lăcătuşu, A. T. Rømer, M. Bertelsen, M. Boehm, R. Toft-Petersen, J.-C. Grivel, S. B. Emery, L. Udby, B. O. Wells, and K. Lefmann.

DOI: 10.1103/PhysRevLett.120.037003

Zita Hüsges

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.