Gemeinsame Graduiertenschule zur Data Science fördert erste Projekte

Die Helmholtz-Gemeinschaft, das Einstein Center Digital Future (ECDF) und die Berliner Universitäten bauen in Berlin eine neue Graduiertenschule im Bereich Data Science auf. Daran beteiligt sich auch das Helmholtz-Zentrum Berlin mit mehreren Projekten. Die ersten Promotionsstellen sind nun ausgeschrieben. 

Die Graduiertenschule HEIBRiDS ("Helmholtz Einstein International Research School on Data Science") wird mit sechs Millionen Euro gefördert. Sie zielt darauf ab, Promovierende in Themen auszubilden, die große Fachkenntnis in der Informatik erfordern, aber auch Fachwissen in anderen Disziplinen. Dabei sollen die Doktoranden ein tiefes Verständnis der komplexen Beziehungen zwischen Fachwissen, algorithmischen Fähigkeiten und anwendungsbezogenen Methoden erwerben.

Die Graduiertenschule bietet mindestens 25 Doktorandinnen und Doktoranden eine vierjährige Ausbildung. Sie ist standortübergreifend organisiert, so dass Promovierende von gemeinsamen Lehr- und Bildungsangeboten sowie einem vernetztem Forschungsumfeld profitieren. Die interdisziplinären Themen werden von Betreuer-Teams, bestehend aus einem Forscher aus der Helmholtz-Gemeinschaft und einem aus dem Einsteinzentrum ECDF, betreut. Das HZB bietet in diesem Jahr zwei Promotionsstellenan. Für die gesamte Laufzeit der Graduiertenschule werden am HZB bis zu fünf Stellen zur Verfügung gestellt.

In die Graduiertenschule fließt die wissenschaftliche Expertise der teilnehmenden Institutionen ein. Die in der Hauptstadtregion ansässigen sechs Helmholtz-Zentren decken die Bereiche Medizin, Energieforschung, Transport, Erdwissenschaften und Klima ab. Das Einstein Center Digital Future beschäftigt sich mit Digitalisierungs-Kerntechnologien, von der digitalen Gesundheit über die digitale Industrie bis hin zu den digitalen Geisteswissenschaften.

Informationen zur Bewerbung

Hier geht es zu den ausgeschriebenen Stellen der Graduiertenschule HEIBRiDS. Auf der Website des MDC befindet sich das zentrale Bewerberportal für die Promotionsstellen aller Helmholtz-Zentren. Die Bewerbungsfrist endet am 3. März 2018.

 

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.