Hidden talents: Converting heat into electricity with pencil and paper

Pencil, paper and co-polymer varnish are sufficient for a thermoelectrical device.

Pencil, paper and co-polymer varnish are sufficient for a thermoelectrical device. © HZB

Scanning electron micrsocopy of pencil traces.

Scanning electron micrsocopy of pencil traces. © HZB

Sketch of the experiment.

Sketch of the experiment. © HZB

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest of components: a normal pencil, photocopy paper, and conductive paint are sufficient to convert a temperature difference into electricity via the thermoelectric effect. This has now been demonstrated by a team at the Helmholtz-Zentrum Berlin.

The thermoelectric effect is nothing new – it was discovered almost 200 years ago by Thomas J. Seebeck. If two different metals are brought together, then an electrical voltage can develop if one metal is warmer than the other. This effect allows residual heat to be partially converted into electrical energy. Residual heat is a by-product of almost all technological and natural processes, such as in power plants and every household appliance, and the human body as well. It is one of the largest underutilised energy sources in the world - and usually goes completely unused.

Tiny effect

Unfortunately, as useful an effect as it is, it is extremely small in ordinary metals. This is because metals not only have high electrical conductivity, but high thermal conductivity as well, so that differences in temperature disappear immediately. Thermoelectric materials need to have low thermal conductivity despite their high electrical conductivity. Thermoelectric devices made of inorganic semiconductor materials such as bismuth telluride are already being used today in certain technological applications. However, such material systems are expensive and their use only pays off in certain situations. Flexible, non-toxic, organic materials based on carbon nanostructures, for example, are also being investigated for use in the human body.

HB pencil and co-polymer varnish

A team led by Prof. Norbert Nickel at the HZB has now shown that the effect can be obtained much more simply: using a normal HB-grade pencil, they covered over a small area in pencil on ordinary photocopy paper. As a second material, they applied a transparent, conductive co-polymer paint (PEDOT: PSS) onto the surface.

What transpires is that the pencil traces on the paper deliver a voltage comparable to other far more expensive nanocomposites that are currently used for flexible thermoelectric elements. And this voltage could be increased tenfold by adding some indium selenide to the graphite from the pencil.

Poor heat transport explained

The researchers investigated graphite and co-polymer coating films using a scanning electron microscope and spectroscopic methods (Raman scattering) at HZB. “The results were very surprising for us as well,” explains Nickel. “But we have now found an explanation of why this works so well: the pencil deposit left on the paper forms a surface characterised by unordered graphite flakes, some graphene, and clay. While this only slightly reduces the electrical conductivity, heat is transported much less effectively.”

Outlook: Flexible Components printed right on paper

These simple constituents might be able to be used in the future to print thermoelectric components onto paper that are extremely inexpensive, environmentally friendly, and non-toxic. Such tiny and flexible components could also be used directly on the body and could use body heat to operate small devices or sensors.

To the publication in ACS Appl. Mater. Interfaces (2018): "Fine Art of Thermoelectricity", Viktor Brus, Marc A. Gluba, Joerg Rappich, Felix Lang, Pavlo Maryanchuk, and Norbert H. Nickel.

DOI: 10.1021/acsami.7b17491

The work has received the Editors' Choice Award from the American Chemical Society (ACS) and is now available to all readers via Open Access.

arö


You might also be interested in

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).